Skip to main content
Log in

Elastoplastic cracks in orthotropic crystals using dislocation layers

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The method of dislocation layers is used to study the stress-field created around an infinite row of collinear Griffith-type elastoplastic strip cracks in an orthotropic crystal loaded at infinity. Formal solutions are obtained in detail for the mode III antiplane shear case, leading to explicit expressions for the length of the plastic zones and the total plastic displacement at the crack-tips. Some representative numerical results are given. It is observed that the problems of a single, elastoplastic crack within a finite orthotropic plate and a finite plate containing a surface crack have solutions which are actually also provided by this analysis. The mode I and mode II analogous situations are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bilby, B. A., Eshelby, J. D.: Fracture (Liebowitz, H., ed.), Vol. 1, p. 99. New York: Academic Press, 1968.

    Google Scholar 

  2. Lardner, R. W.: Mathematical theory of dislocations and fracture. University of Toronto Press, 1974.

  3. Sneddon, I. N., Lowengrub, M.: Crack problems in the classical theory of elasticity. New York: Wiley 1969.

    Google Scholar 

  4. Sih, G. C., ed.: Methods of analysis and solutions of crack problems. Mechanics of fracture, Vol. 1. Leyden: Noordhoff Int. Pub. 1973.

    Google Scholar 

  5. Bilby, B. A., Cottrell, A. H., Swinden, K.: The spread of plastic yield from a notch. Proc. Roy. Soc.A 272, 304–314 (1963).

    Google Scholar 

  6. Singh, B. M., Moodie, T. B., Haddow, J. B.: Closed-form solutions for finite length crack moving in a strip under anti-plane shear stress. Acta Mech.38, 99–109 (1981).

    Google Scholar 

  7. Tait, R. J., Moodie, T. B.: Complex variable methods and closed form solutions to dynamic crack and punch problems in the classical theory of elasticity. Int. J. Engng. Sci.19, 221–229 (1981).

    Google Scholar 

  8. Georgiadis, H. G., Theocaris, P. S.: The Keldysh-Sedov method for a closed-form elastodynamic solution of the cracked strip under anti-plane shear. Int. J. Engng. Sci.24, 1135–1140 (1986).

    Google Scholar 

  9. Bilby, B. A., Cottrell, A. H., Smith, E., Swinden, K. H.: Plastic yielding from sharp notches. Proc. Roy. Soc.A 279, 1–9 (1964).

    Google Scholar 

  10. Chou, Y. T., Sha, G. T.: On the elastic field of a dislocation in an anistoropic crystal. Scrip. Metal.5, 551–558 (1971).

    Google Scholar 

  11. Chou, Y. T.: Interaction of parallel dislocations in a hexagonal crystal. J. Appl. Phys.33, 2747–2751 (1962).

    Google Scholar 

  12. Chou, Y. T., Garofalo, F., Whitmore, R. W.: Interactions between glide dislocations in a double pile-up in α-iron. Acta Met.9, 480–488 (1960).

    Google Scholar 

  13. Chou, Y. T., Whitmore, R. W.: Single and double pile-up of dislocations in MgO crystals. J. Appl. Phys.32, 1920–1926 (1961).

    Google Scholar 

  14. Tupholme, G. E.: A study of cracks in orthotropic crystals using dislocation layers. J. Eng. Math.8, 57–69 (1974).

    Google Scholar 

  15. Leibfried, G.: Verteilung von Versetzungen im statischen Gleichgewicht. Z. Phys.130, 214–226 (1951).

    Google Scholar 

  16. Muskhelishvili, N. I.: Singular integral equations. Leyden: Noordhoff Int. Pub., 1953.

    Google Scholar 

  17. Gakhov, F. D.: Boundary value problems. Oxford: Pergamon 1966.

    Google Scholar 

  18. Hearmon, R. F. S.: The elastic constants of crystals and other anisotropic materials; Landolt-Börnstein.Numerical data and functional relationships in science and technology (New series, Editor in Chief: Hellwege, K.-H.). Group III: Crystal and solid state physics, Vol. 11: Elastic, piezoelectric, pyroelectric, piezooptic, electrooptic constants, and nonlinear dielectric susceptibilities of crystals, pp. 1–78, (1979). Berlin-Heidelberg-New York: Springer 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tupholme, G.E. Elastoplastic cracks in orthotropic crystals using dislocation layers. Acta Mechanica 73, 177–185 (1988). https://doi.org/10.1007/BF01177037

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01177037

Keywords

Navigation