Skip to main content
Log in

An experimental investigation of the Reynolds number effect on a normal shock wave-turbulent boundary layer interaction on a curved wall

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The presented experiment concerned an interaction between a normal shock wave, terminating a local supersonic area in a curved duct, and a turbulent boundary layer developed along the convex wall. This paper deals with the Reynolds number effect upon the interaction structure.

The measurements included flow parameters distribution determination, boundary layer development through the interaction area and the shock wave topography visualization. In order to gain more information about separation the wall oil tracing has been applied. The comparison of our results with other published data is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ackeret, J., Feldmann, F., Rott, H.: Untersuchungen an Verdichtungsstößen und Grenzschichten in schnell bewegten Gasen. Bericht No. 10 des Instituts für Aerodynamik, ETH Zürich (1946).

  2. Seddon, J.: The flow produced by interactions of a turbulent boundary layer with a normal shock wave of strength sufficient to cause separation. ARC R and M 3502 (1967).

  3. Kooi, J. W.: Influence of free-stream Mach number on transonic shock-wave boundary-layer interaction. NRL MP 78012U.

  4. Padova, C., Falk, T. J., Transonic shock wave-boundary layer interactions. AFOSRTR-80-0694 (1980).

  5. Padova, C., Falk, T. J., Wittliff, C. E.: Experimental investigation of similitude parameters governing transonic shock-boundary layer interactions. AIAA Paper80-0158 (1980).

  6. Vidal, R. J., Wittliff, C. E., Catlin, P. A., Sheen, B. H.: Reynolds number effects on the shock wave-turbulent boundary layer interaction at transonic speeds. AIAA Paper No. 78-661 (1973).

  7. Delery, J. M.: Experimental investigation of turbulence properties in transonic shock/boundary-layer interactions. AIAA J.21, 2, 180–185 (1983).

    Google Scholar 

  8. Abbis, J. B., East, L. F., et al.: A study of the interaction of a normal shock wave and a turbulent boundary layer using a Laser anemometer. REA-TR-75141 (1976).

  9. Doerffer, P.: An experimental stand and measurement methodes to be used in turbulent boundary layer-normal shock wave interaction on a curved wall. Strömungsmechanik und Strömungsmaschinen 35/85, Universität Karlsruhe (1985).

  10. Nebbeling, C.: An experimental investigation of the interaction between a shock wave and a turbulent boundary layer on a convex wall. Report LR-428 (May 1984), Delft University of Technology, Department of Aerospace Engineering.

  11. Doerffer, P.: The compression zone topography in the normal shock wave-turbulent boundary layer interaction. Strömungsmechanik und Strömungsmaschinen 38/66, Universität Karlsruhe (1986).

  12. Doerffer, P.: Boundary layer pressure distribution measurements in a transonic wind tunnel. Strömungsmechanik und Strömungsmaschinen 35/85, Universität Karlsruhe (1985).

  13. Myring, D. F.: The effects of normal pressure gradients on the boundary layer momentum integral equation. RAE Report 68214, August (1968).

  14. Om, D., Viegas, J. R., Childs, M. E.: Transonic shock-wave/turbulent boundarylayer interactions in a circular duct. AIAA J.23, 5, 707–714 (1985).

    Google Scholar 

  15. Dallmann, U.: Topological structures of three-dimensional flow separations. DFVLR, IB 221-81A07, Göttingen (1983).

  16. Mateer, G. G., Viegas, J. R.: Effect of Mach and Reynolds number on a normal shock-wave/turbulent boundary-layer interaction. AIAA Paper 79-1502.

  17. Doerffer, P.: An experimental investigation of a normal shock wave and a turbulent boundary layer interaction at a curved wall for:M w=1.47, Re°u =1.53·105. Strömungsmechanik und Strömungsmaschinen 38/86, Universität Karlsruhe (1986).

  18. Mateer, G. G., Brosh, A., Viegas, J. R.: A normal shock-wave turbulent boundarylayer interaction at transonic speeds. AIAA Paper 76-161 (1976).

  19. Doerffer, P., Dallmann, U.: Separation structure produced by a normal shock wave/turbulent boundary layer interaction on a curved wall in a narrow wind tunnel. AIAA Conference, June 8–10, 1987, Honolulu, paper No. 87-1370.

  20. Bohning, R., Zierep, J.: Normal shock turbulent boundary layer interaction at a curved wall. AGARD CP No.291, Computations of Viscous-Inviscid Interactions, 17.1–17.8 1980.

  21. Koren, B., Bannink, W. J.: Numerical solution of transonic normal shock waveboundary layer interaction using the Bohning-Zierep Model. Report LR-416, Delft University of Technology, January 1984.

  22. Om, D., Childes, M. E., Viegas, J. R.: An experimental investigation and a numerical prediction of a transonic normal shock wave/turbulent boundary layer interaction. AIAA Paper 82-0990, June 1982.

  23. Oswatitsch, K., Zierep, J.: Das Problem des senkrechten Stoßes an einer gekrümmten Wand. ZAMM40, T143 (1960) (Tagungsheft).

  24. Viegas, J. R., Horstman, C. C.: Comparison of multiequation turbulence models for several shock boundary layer interaction flows. AIAA J.17, 8, 811–820 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 11 Figures

The experiments have been carried out at the Institut für Strömungslehre und Strömungsmaschinen, Karlsruhe Universität, Karlsruhe, Federal Republic of Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doerffer, P., Zierep, J. An experimental investigation of the Reynolds number effect on a normal shock wave-turbulent boundary layer interaction on a curved wall. Acta Mechanica 73, 77–93 (1988). https://doi.org/10.1007/BF01177032

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01177032

Keywords

Navigation