Skip to main content
Log in

A Reissner-Mindlin-type plate theory including the direct piezoelectric and the pyroelectric effect

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

This paper is concerned with flexural vibrations of composite plates, where piezoelastic layers are used to generate distributed actuation or to perform distributed sensing of strains in the plate. Special emphasis is given to the coupling between mechanical, electrical and thermal fields due to the direct piezoelectric effect and the pyroelectric effect. Moderately thick plates are considered, where the influence of shear and rotatory inertia is taken into account according to the kinematic approximations introduced by Mindlin. An equivalent single-layer theory is thus derived for the composite plates. It is shown that coupling can be taken into account by means of effective stiffness parameters and an effective thermal loading. Polygonal plates with simply supported edges are treated in some detail, where quasi-static thermal bending as well as free, forced and actuated vibrations are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bailey, T., Hubbard Jr., J. E.: Distributed piezoelectric-polymer active vibration control of a cantilever beam. J. Guidance Control and Dynamics8, 605–611 (1985).

    Google Scholar 

  2. Lee, C. K.: Piezoelectric laminates: Theory and experiments for distributed sensors and actuators. In: Intelligent Structural Systems (Tzou, H. S., Anderson, G. L., eds.), pp. 75–167, Dordrecht: Kluwer 1992.

    Google Scholar 

  3. Crawley, E. F.: Intelligent structures for aerospace: A technology overview and assessment. AIAA Journal32, 1689–1699 (1994).

    Google Scholar 

  4. Rao, S. S., Sunar, M.: Piezoelectricity and its use in disturbance sensing and control of flexible structures: A survey. Appl. Mech. Rev.47, 113–123 (1994).

    Google Scholar 

  5. Miu, D. K.: Mechatronics: Electromechanics and contromechanics. New York: Springer 1993.

    Google Scholar 

  6. Mindlin, R. D.: Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. J. Appl. Mech.18, 31–38 (1951).

    Google Scholar 

  7. Saravanos, D. A., Heyliger, P. R., Hopkins, D. A.: Layerwise mechanics and finite element for the dynamic analysis of piezoelectric composite plates. Int. J. Solids Struct.34, 359–378 (1997).

    Google Scholar 

  8. Krommer, M., Irschik, H.: On the influence of the electric field on free transverse, vibrations of smart beams. J. Smart Mater. Struct.8, 401–410 (1999).

    Google Scholar 

  9. Mura, T.: Micromechanics of defects in solids. Dordrecht: Kluwer 1991.

    Google Scholar 

  10. Tauchert, T. R.: Piezothermoelastic behavior of a laminate plate. Thermal Stresses15, 25–37 (1992).

    Google Scholar 

  11. Vinson, J. R.: The behavior of shells composed of isotropic and composite materials. Dordrecht: Kluwer 1993.

    Google Scholar 

  12. Irschik, H.: On vibrations of layered beams and plates. ZAMM73, T34–45 (1993).

    Google Scholar 

  13. Yu, Y. Y.: Vibrations of elastic plates. New York: Springer 1996.

    Google Scholar 

  14. Tzou, H. S., Bao, Y.: Modelling of thick anisotropic composite triclinic shell transducer laminates. Smart Mater. Struct.3, 285–292 (1994).

    Google Scholar 

  15. Tzou, H. S., Bao, Y.: A theory on anisotropic piezothermoelastic shell laminates with sensor/actuator applications. Journal of Vibration and Sound184, 453–473 (1995).

    Google Scholar 

  16. Mitchell, J. A., Reddy, J. N.: A refined hybrid plate theory for composite laminates with piezoelectric laminae. Int. J. Solids Struct.32, 2345–2367 (1995).

    Google Scholar 

  17. Tiersten, H. F.: Linear piezoelectric plate vibrations. New York: Plenum 1969.

    Google Scholar 

  18. Parkus, H.: Variational principles in thermo- and magneto-elasticity. New York: Springer 1970.

    Google Scholar 

  19. Crawley, E. F., de Luis, J.: Use of piezoelectric actuators as elements of intelligent structures, AIAA-Journal25, 1373–1385 (1987).

    Google Scholar 

  20. Zhou, Y. S., Tiersten, H. F.: An elastic analysis of laminated composite plates in cylindrical bending due to piezoelectric actuators. J. Smart Mater. Struct.3, 255–265 (1994).

    Google Scholar 

  21. Irschik, H.: Membrane-type eigenmotions of Mindlin plates. Acta Mech.55, 1–20 (1985).

    Google Scholar 

  22. Irschik, H., Heuer, R., Ziegler, F.: Dynamic analysis of polygonal Mindlin plates on two-parameter foundations using classical plate theory and an advanced BEM. Comp. Mech.4, 293–300 (1989).

    Google Scholar 

  23. Irschik, H., Pachinger, F.: On thermal bending of moderately thick polygonal plates with simply supported edges. J. Thermal Stresses18, 59–68 (1995).

    Google Scholar 

  24. Saravanos, D. A., Heyliger, P. R.: Coupled layerwise analysis of composite beams with embedded piezoelectric sensors and actuators. J. Intelligent Material Systems and Structures6, 350–363 (1995).

    Google Scholar 

  25. Lee, H.-J., Saravanos, D. A.: Coupled layerwise analysis of thermopiezoelectric composite beam. AIAA-Journal34, 1231–1237 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krommer, M., Irschik, H. A Reissner-Mindlin-type plate theory including the direct piezoelectric and the pyroelectric effect. Acta Mechanica 141, 51–69 (2000). https://doi.org/10.1007/BF01176807

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01176807

Keywords

Navigation