Skip to main content
Log in

Two-dimensional analysis of geosynthetic tubes

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Geosynthetic tubes containing dredged material or mortar are considered. A two-dimensional analysis of a cross section of the tube is carried out. The tube is modeled as a membrane with negligible weight and extensibility, resting on a rigid foundation and subjected to internal hydrostatic pressure. Closed-form and approximate solutions for the cross-sectional shape and the circumferential tension are presented, depending on the ratio of the pressure head (at the bottom or top of the tube) to the perimeter. An upper bound on the tension is obtained. Solutions are also determined for tubes that are partially or fully submerged in an external fluid, tubes that rest on a deformable foundation such as soil, and the unsymmetric problem of tubes that act as a dike and are subjected to external fluid on one side. A deformable foundation tends to cause the circumferential tension to increase, whereas external pressure tends to cause the tension to decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koerner, R. M., Welsh, J. P.: Construction and geotechnical engineering using synthetic fabrics. New York: Wiley 1980.

    Google Scholar 

  2. John, N. W. M.: Geotextiles. Glasgow: Blackie & son 1987.

    Google Scholar 

  3. Rollin, A., Rigo, J.-M. (eds.): Geomembranes — identification and performance testing. London: Chapman and Hall 1991.

    Google Scholar 

  4. Ingold, T. S.: The geotextiles and geomembranes manual. Oxford: Elsevier 1994.

    Google Scholar 

  5. Koerner, R. M.: Designing with geosynthetics, 3rd ed. Englewood Cliffs: Prentice-Hall 1994.

    Google Scholar 

  6. van Santvoort, G. P. T. M. (ed.): Geotextiles and geomembranes in civil engineering. Rotterdam: A. A. Balkema 1994.

    Google Scholar 

  7. van Santvoort, G. P. T. M.: Geosynthetics in civil engineering. Rotterdam: A. A. Balkema 1995.

    Google Scholar 

  8. Austin, T.: A second life for dredged material. Civil Eng.65, 60–63 (1995).

    Google Scholar 

  9. den Adel, H., Hendrikse, C. S. H., Pilarczyk, K.: Design and application of geotubes and geocontainers. In: Proc. 1st European Conf. on Geosynthetics, Maastricht, The Netherlands, pp. 925–931 (1996).

  10. Leshchinsky, D., Leshchinsky, O., Ling, H. I., Gilbert, P. A.: Geosynthetic tubes for confining pressurized slurry: some design aspects. J. Geotech. Eng.122, 682–690 (1996).

    Google Scholar 

  11. Erchinger, H. F.: Geotextile tubes filled with sand for beach erosion control, North Sea Coast, Germany. In: Geosynthetics case histories (Raymond, G. P., Giroud, J.-P., eds.), pp. 102–103. Richmond: Bi Tech 1994.

    Google Scholar 

  12. Pilarczyk, K. W., Zeidler, R. B.: Offshore breakwaters and shore evolution control. Rotterdam: A. A. Balkema 1996.

    Google Scholar 

  13. Sprague, C. J., Fowler, J.: Dredged material-filled geotextile containers: case histories, research and upcoming workshop. Geotech. Fabrics Rep., Industrial Fabrics Association International, St. Paul, Minn.12, 42–54 (1994).

    Google Scholar 

  14. Koerner, R. M., Koerner, G. R.: Geotextiles used as flexible forms. Geotex. Geomembr.14, 301–311 (1996).

    Google Scholar 

  15. Koerner, R. M., Welsh, J. P.: Fabric forms conform to any shape. Concrete Construction25, 401–409 (1980).

    Google Scholar 

  16. Perrier, H.: Use of soil-filled synthetic pillows for erosion protection. In: Proc. 3rd Int. Conf. on Geotextiles, Vienna, pp. 1115–1119 (1986).

  17. Maldonado, M.: For sure shores. Civil Eng.66, 57–60 (1996).

    Google Scholar 

  18. Plaut, R. H., Fagan, T. D.: Vibrations of an inextensible, air-inflated, cylindrical membrane. J. Appl. Mech.55, 672–675 (1988).

    Google Scholar 

  19. Païdoussis, M. P.: Pressure waves on horizontal liquid-filled flexible tubes. J. Mech. Eng. Sci.7, 380–390 (1965).

    Google Scholar 

  20. Delft Hydraulics Laboratory: Breakwater of concrete filled hoses. Report M1085 (1973).

  21. Liu, G. S., Silvester, R.: Sand sausages for beach defense work. In: Proc. 6th Australasian Hydraulics and Fluid Mechs. Conference, Adelaide, Australia, pp. 340–343 (1977)

  22. Wang, C.-Y., Watson, L. T.: The fluid-filled cylindrical membrane container. J. Eng. Math.15, 81–88 (1981)

    Google Scholar 

  23. Namias, V.: Load-supporting fluid-filled cylindrical membranes. J. Appl. Mech.52, 913–918 (1985).

    Google Scholar 

  24. Silvester, R.: Use of grout-filled sausages in coastal structures. J. Wtrwy. Port. Coast. Ocean Eng.112, 95–114 (1986).

    Google Scholar 

  25. Silvester, R.: Flexible membrane units for breakwaters. In: Handbook of coastal and ocean engineering1, (Herbich, J. B., ed.), pp. 921–938. Houston: Gulf 1990.

    Google Scholar 

  26. Silvester, R., Hsu, J. R. C.: Coastal stabilization: innovative concepts. Englewood Cliffs: Prentice-Hall 1993.

    Google Scholar 

  27. Demiray, H., Levinson, M.: The long fluid storage bag: a contact problem for a closed membrane. Int. J. Mech. Sci.14, 431–439 (1972).

    Google Scholar 

  28. Leonard, J. W.: Tension structures, p. 246. New York: McGraw-Hill 1988.

    Google Scholar 

  29. Gradshteyn, I. S., Ryzhik, I. M.: Tables of integrals, series, and products, 5th ed. Boston: Academic Press 1994.

    Google Scholar 

  30. Kazimierowicz, K.: Simple analysis of deformation of sand-sausages. In: Proc. 5th Int. Conf. on Geotextiles, Geomembranes and Related Products, Singapore, pp. 775–778 (1994).

  31. Carroll, R. P.: Submerged geotextile flexible forms using noncircular cylindrical shapes. Geotech. Fabrics Rep., Industrial Fabrics Association International, St. Paul, Minn.12, 4–15 (1994).

    Google Scholar 

  32. Leshchinsky, D., Leshchinsky, O.: Geosynthetic confined pressurized slurry (GeoCoPS): supplemental notes for version 1.0. U. S. Army Corps of Engineers Waterways Experiment Station, Vicksburg, Miss., Tech. Rept. CPAR-GL-96-1 (1996).

    Google Scholar 

  33. Bogossian, F., Smith, R. T., Vertematti, J. C., Yazbek, O.: Continuous retaining dikes by means of geotextiles. In: Proc. 2nd Int. Conf. on Geotextiles,I, Las Vegas, Nevada, pp. 211–216 (1982).

  34. Hawthorne, W. R.: The early development of the Dracone flexible barge. Proc. Inst. Mech. Eng. London175, 52–83 (1961).

    Google Scholar 

  35. Szyszkowski, W., Glockner, P. G.: On the statics of large-scale cylindrical floating membranej containers. Int. J. Non-Linear Mech.22, 275–282 (1987).

    Google Scholar 

  36. Løland, G., Aarsnes, J. V.: Fabric as construction material for marine applications. In: Hydroelasticity in marine technology (Faltinsen, O., Larsen, C. M., Moan, T., Holden, K., Spidsøe, N., eds.), pp. 275–286. Rotterdam: A. A. Balkema 1994.

    Google Scholar 

  37. Zhao, R.: A complete linear theory for a two-dimensional floating and liquid-filled membrane structure in waves. J. Fluids Struct.9, 937–956 (1995).

    Google Scholar 

  38. Scott, R. F.: Foundation analysis. Englewood Cliffs. Prentice-Hall 1981.

    Google Scholar 

  39. Hsieh, J.-C., Plaut, R. H., Yucel, O.: Vibrations of an inextensible cylindrical membrane inflated with liquid. J. Fluids Struct.3, 151–163 (1989).

    Google Scholar 

  40. Hsieh, J.-C., Plaut, R. H.: Free vibrations of inflatable dams. Acta Mech.85, 207–220 (1990).

    Google Scholar 

  41. Parbery, R. D.: A continuous method of analysis for the inflatable dam. Proc. Inst. Civil Eng. Part 2,61, 725–736 (1976).

    Google Scholar 

  42. Bahder, T. B.: Mathematica for scientists and engineers. Reading: Addison Wesley 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plaut, R.H., Suherman, S. Two-dimensional analysis of geosynthetic tubes. Acta Mechanica 129, 207–218 (1998). https://doi.org/10.1007/BF01176746

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01176746

Keywords

Navigation