Skip to main content
Log in

Quasilinear elliptic-parabolic differential equations

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Alexiades, V., Cannon, J.R.: Free boundary problems in solidification of alloys. SIAM J. Math. Anal.11, 254–264 (1980)

    Google Scholar 

  2. Alt, H.W., DiBenedetto, E.: The flow of water and oil through porous media. Preprint

  3. Alt, H.W., Luckhaus, S.: Quasilinear elliptic-parabolic differential equations. Preprint 136, SFB 123, Heidelberg (1982)

  4. Alt, H.W., Luckhaus, S., Visintin, A.: Nonlinear filtration equation and the dam problem. Ann. Mat. Pura Appl. (to appear)

  5. Aronson, D.G.: Regularity properties of flows through porous media: The interface Arch. Rational Mech. Anal.37, 1–10 (1970)

    Google Scholar 

  6. Attouch, H., Damlamian, A.: Problèmes d'évolution dans les Hilberts et applications. J. Math. Pures Appl.54, 53–74 (1975).

    Google Scholar 

  7. Benilan, P.: Equations d'évolution dans un espace de Banach quelconque et applications. Thèse, Univ. Paris XI, Orsay 1972

    Google Scholar 

  8. Benilan, P.: Operateursm-accretifs hémicontinues dans un espace de Banach quelconque. C.R. Acad. Sci. Paris Sér. A278, 1029–1032 (1974)

    Google Scholar 

  9. Benilan, P.: Existence des solutions fortes pour l'equation des milieux poreux. C.R. Acad. Sci. Paris Sér A285, 1029–1031 (1977).

    Google Scholar 

  10. Benilan, P., Brezis, H., Crandall, M.G.: A semilinear equation inl 1(ℝN). Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)2, 523–555 (1975)

    Google Scholar 

  11. Brezis, H.: Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. Amsterdam: North-Holland 1973

    Google Scholar 

  12. Cannon, J.R., DiBenedetto, E.: On the existence of weak solutions to ann-dimensional Stefan problem with nonlinear boundary conditions. SIAM J. Math. Anal.11, 632–645 (1980)

    Google Scholar 

  13. Crandall, M.G.: An introduction to evolution governed by accretive operators. In: Dynamical Systems. Proceedings of an International Symposium (Brown University, 1974). New York-San Francisco-London: Academic Press 1975

    Google Scholar 

  14. Damlamian, A., Kenmochi, N.: Le problème de Stefan avec conditions latérales variables. Hiroshima Math. J.10, 271–293 (1980).

    Google Scholar 

  15. van Duyn, C.J., Peletier, L.A.: Non-stationary filtration in partially saturated porous media. Preprint Amsterdam Math. Centrum (1979)

  16. Gilding, B.H.: A nonlinear degenerate parabolic equation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)4, 393–432 (1977)

    Google Scholar 

  17. Hornung, U.: Die longitudinale Linienmethode für die ausgeartete nichtlineare Fokker-Planksche Differentialgleiching. Habilitationsschrift, Münster 1978

  18. Kröner, D., Luckhaus, S.: Flow of oil and water in a porous medium. J. Differential Equations (to appear)

  19. Niezgódka, M., Pawlow, I.: A generalized Stefan problem in several space variables. Appl. Math. Optim.9, 193–224 (1983).

    Google Scholar 

  20. Oleinik, O.A., Kalashnikov, A.S., Yui-Lin, Chzou: The Cauchy, problem and boundary value problems for equations of the type of nonstationary filtration. Izv. Akad. Nauk SSSR Ser. Mat.22, 667–704 (1958) [Russian]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work is supported by the Deutsche Forschungsgemeinschaft, Heisenberg-Programm, SFB 123 and SFB 72

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilhelm Alt, H., Luckhaus, S. Quasilinear elliptic-parabolic differential equations. Math Z 183, 311–341 (1983). https://doi.org/10.1007/BF01176474

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01176474

Keywords

Navigation