Skip to main content
Log in

Yield functions that account for the effects of initial and subsequent plastic anisotropy

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

A descriptive initial yield function is presented from an examination of experimentally determined yield loci, component plastic strain paths and Lode's parameters that indicate either a severe textural anisotropy in a material or a slight departure from the von Mises condition. The transition from the initial function to one that describes a subsequent yield surface which translates with the stress vector is developed and compared with experimental results. Observations on the Bauschinger, Swift and hardening effects in subsequent yield loci, defined at the limit of proportionality, are adequately represented through Ziegler's translation law when modified for non-linear work hardening. It is shown that the marked distortion, particularly apparent, in the presence of shear stress, may be represented by considering separately the translation for each quadrant of the initial yield locus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hill, R.: The mathematical theory of plasticity. Oxford University Press 1950.

  2. Prager, W.: A new method of analysing stresses and strains in work hardening plastic solids. J. Appl. Mech.23, 493–496 (1956).

    Google Scholar 

  3. Hodge, P. G.: Discussion on [2]. J. Appl. Mech.24, 482–483 (1957).

    Google Scholar 

  4. Baltov, A., Sawczuk, A.: A rule of anisotropic hardening. Acta Mechanica1, 81–92 (1965).

    Google Scholar 

  5. Backhaus, G.: Zur Fließgrenze bei allgemeiner Verfestigung. ZAMM48, 99–108 (1968).

    Google Scholar 

  6. Edelman, F., Drucker, D. C.: Some extensions to elementary plasticity theory. J. Franklin Inst.251, 581–605 (1951).

    Google Scholar 

  7. Yoshimura, Y.: Hypothetical theory of anisotropy and the Bauschinger effect due to plastic strain history. Aero. Res. Inst., Tokyo Univ. Rpt. No.349, 224–246 (1959).

    Google Scholar 

  8. Williams, J. F., Svensson, N. L.: A rationally based yield criterion, for work hardening materials. Meccanica6, 104–110 (1971).

    Google Scholar 

  9. Svensson, N. L.: Anisotropy and the Bauschinger effect in cold rolled aluminium. J. Mech. Engng Sci.8, 162–172 (1966).

    Google Scholar 

  10. Rees, D. W. A.: Anisotropic hardening theory and the Bauschinger effect. J. Strain Analysis16 (2), 85–95 (1981).

    Google Scholar 

  11. Taylor, C. I., Quinney, H.: The plastic distortion of metals. Phil. Trans. Roy. Soc.203 A, 323–362 (1931).

    Google Scholar 

  12. Lee, D., Backofen, W. A.: An experimental determination of the yield locus for titanium and titanium alloy sheet. Trans. Met. Soc., AIME236, 1077–1084 (1966).

    Google Scholar 

  13. Rogan, J., Shelton, A.: Yield and subsequent flow behaviour of some annealed steels under combined stress. J. Strain Analysis4, 127–137 (1969).

    Google Scholar 

  14. Dillamore, I. L., Hazel, R. J., Watson, T. W., Hadden, P.: An experimental study of the mechanical anisotropy of some common metals. Int. J. Mech. Sci.13, 1049–1061 (1971).

    Google Scholar 

  15. Rogan, J., Shelton, A.: Effect of prestress on the yield and flow behaviour of En 25 steel. J. Strain Analysis4, 138–161 (1969).

    Google Scholar 

  16. Liu, S. I., Sachs, G.: The flow and fracture characteristics of the aluminium alloy 24 ST after alternating tension and compression. Metals Tech., AIMME., Tech. Pub., No.2392, 1–12 (1948).

    Google Scholar 

  17. Phillips, A., Tang, J. L.: The effect of loading path on the yield surface at elevated temperatures. Int. J. Solids Structures8, 463–474 (1972).

    Google Scholar 

  18. Swift, H. W.: Length changes in metals under torsional overstrain. Engineering163, 253–257 (1947).

    Google Scholar 

  19. Betten, J.: Plastische Anisotropie und Bauschinger-Effekt; allgemeine Formulierung und Vergleich mit experimentell ermittelten Fließortkurven. Acta Mechanica25, 79–94 (1976).

    Google Scholar 

  20. Rees, D. W. A.: Biaxial creep and plastic flow in anisotropic aluminium. Ph.D. thesis, C.N.A.A. (U.K.), 1976.

  21. Johnson, A. E., Frost, N. E., Henderson, J.: Plastic strain and stress relations at high temperatures. The Engineer (Lond.)199 (5173), 366–369 (1955).

    Google Scholar 

  22. Mehan, R. L.: Effect of combined stress on yield and fracture behaviour of Zircaloy-2. J. Basic. Eng., Trans. ASME83, 499–512 (1961).

    Google Scholar 

  23. Rees, D. W. A.: A hardening model for anisotropic materials. Experimental Mechanics21, 245–254 (1981).

    Google Scholar 

  24. Shih, C. F., Lee, D.: Further developments in anisotropic plasticity. J. Eng. Mat. Tech., Trans. ASME100, 294–302 (1978).

    Google Scholar 

  25. Avery, D. H., Hosford, W. F., Backofen W. A.: Plastic anisotropy in magnesium alloy sheets. Trans. Met. Soc. AIME233, 71–78 (1965).

    Google Scholar 

  26. Williams, J. F., Svensson, N. L.: Effect of torsional prestrain on the yield locus of 1100 F aluminium. J. Strain Analysis6, 263–272 (1971).

    Google Scholar 

  27. Ziegler, H.: A modification to Prager's hardening rule. Quart. App. Math.17, 55–65 (1959).

    Google Scholar 

  28. Moreton, D. N., Moffat, D. G., Hornby, R. P.: Techniques for investigating the yield surface behaviour of pressure vessel materials. J. Strain Analysis13 (3), 185–191 (1978).

    Google Scholar 

  29. Miastkowski, J., Szczepinski, W.: An experimental study of yield surfaces of prestrained brass. Int. J. Solids Structures1, 189–194 (1965).

    Google Scholar 

  30. Rees, D. W. A.: A review of stress-strain paths and constitutive relations in the plastic range. J. Strain Analysis16, 235–249 (1981).

    Google Scholar 

  31. Reiner, M.: A mathematical theory of dilatancy. Amer. J. Math.67, 350–362 (1945).

    Google Scholar 

  32. Rivlin, R. S., Ericksen, J. I.: Stress deformation relations for isotropic materials. J. Ratl. Mech. Anal.4, 323–425 (1955).

    Google Scholar 

  33. Phillips, A., Weng, G. J.: An analytical study of an experimentally verified hardening law. J. Appl. Mech. Trans. A.S.M.E.42, 375–378 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 9 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rees, D.W.A. Yield functions that account for the effects of initial and subsequent plastic anisotropy. Acta Mechanica 43, 223–241 (1982). https://doi.org/10.1007/BF01176284

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01176284

Keywords

Navigation