Skip to main content
Log in

Pressure and flow pulses in viscoelastic arterial models with reflection sites

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Herein we develop a linear one-dimensional model for impulse propagation in fluidfilled tubes. Area changes are related to pressure changes by means of convolution integrals of the creep or relaxation function for the tube wall material. The model is employed to study the propagation of pressure and flow pulses along initially uniform tubes and their subsequent interaction with various junctions characteristic of the arterial system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lighthill, M. J.: Mathematical biofluiddynamics. Philadelphia: SIAM.

  2. Lighthill, M. J.: Waves in fluids. Cambridge: Cambridge University Press 1978.

    Google Scholar 

  3. Pedley, T. J.: The fluid mechanics of large blood vessels. Cambridge: Cambridge University Press 1980.

    Google Scholar 

  4. Newman, D. L., Masters, N. J., McNulty, J. F.: Pulse-wave reflection in elastic tubes. Med. Biol. Engng.13, 720 (1975).

    Google Scholar 

  5. Maxwell, J. A., Anliker, M.: The dissipation and dispersion of small waves in arteries and veins with viscoelastic wall properties. Biophysical. J.8, 920 (1968).

    Google Scholar 

  6. Barclay, D. W., Moodie, T. B., Tait, R. J.: Padé extensions to ray series methods and analysis of transients in inhomogeneous viscoelastic media of hereditary type. Int. J. Engng. Sci.21, 663 (1983).

    Google Scholar 

  7. Moodie, T. B., Tait, R. J., Barclay, D. W.: Ray analysis and punching problems for stretched elastic plates. J. Austral. Math. Soc. (Series B)24, 98 (1982).

    Google Scholar 

  8. Moodie, T. B., Barclay, D. W., Tait, R. J.: Waves in inhomogeneous viscoelastic media of Boltzmann type. J. Rheology26, 405 (1982).

    Google Scholar 

  9. Barclay, D. W., Moodie, T. B., Haddow, J. B.: Waves in thin-walled, non-uniform, perfectly elastic tubes containing in compressible inviscid fluid. J. Acoust. Soc. Am.62, 1 (1977).

    Google Scholar 

  10. Chow, J. C. F., Apter, J. T.: Wave propagation in a viscous incompressible fluid contained in flexible viscoelastic tubes. J. Acoust. Soc. Am.44, 437 (1967).

    Google Scholar 

  11. Fung, Y. C.: Stress-strain-history relations of soft tissues in simple elongation. In: Biomechanics: Its foundations and objectives (Fung, Y. C., Perrone, N., Anliker, M., eds.). Englewood Cliffs, N.J.: Prentice-Hall 1972.

    Google Scholar 

  12. Testa, R. B., Bleich, H. H.: Longitudinal impact of a semi-infinite cylindrical viscoelastic shell. J. Appl. Mech.87, 813 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 2 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moodie, T.B., Barclay, D.W. & Tait, R.J. Pressure and flow pulses in viscoelastic arterial models with reflection sites. Acta Mechanica 53, 57–72 (1984). https://doi.org/10.1007/BF01176250

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01176250

Keywords

Navigation