Skip to main content
Log in

Numerical correlation of material structure weaknesses in anisotropic polycrystalline materials

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Repeated computer experiments were implemented to investigate material structure weaknesses in polycrystalline materials. The computational investigation relies on behaviors of mesoscopic stress responses in a simulated polycrystalline aggregate containing a fairly large number of constituent grains. A Kröner-Kneer structure-based model was adopted and refined to provide an efficient numerical solution to local mesoscopic stresses, calculated in terms of grain-averaged fields at a material scale of grain size, in arbitrarily polygon-shaped grains. Three criteria have been proposed for classifying material structure weaknesses in the simulated polycrystalline materials. It is found that material structure weakness of three types can be well correlated by a defined “Orientation-Geometry Factor” Ø and “Relevance Parameter”. Every correlated relation, incorporating effects of grain orientation and geometry, provides a base for discerning material structure weaknesses. The homogenization of an anisotropic material is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sunder, S. S., Wu, M. S.: Crack nucleation due to elastic anisotropy in polycrystalline ice. Cold Regions Sci. Tech.18, 29–47 (1990).

    Google Scholar 

  2. Ghahremani, F., Hutchinson, J. W.: Three-dimensional effects in microcrack nucleation in brittle polycrystals. J. Am. Ceram.73, 1548–1554 (1990).

    Google Scholar 

  3. Lebensohn, R. A., Tomé, C. N.: A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys. Acta Metall. Mater.41, 2611–2624 (1993).

    Google Scholar 

  4. Teng, N. J., Lin, T. H.: Elastic anisotropy effect of crystals on polycrystal fatigue crack initiation. Trans. ASME J. Engng Mater. Tech.117, 470–477 (1995).

    Google Scholar 

  5. Dunn, M. L., Ledbetter, H.: Elastic-plastic behavior of textured short-fiber composites. Acta Metall.45, 3327–3340 (1997).

    Google Scholar 

  6. Lu, Z. K., Weng, G. J.: A self-consistent model for the stress-strain behavior of shape-memory alloy polycrystals. Acta Mater.46, 5423–5433 (1998).

    Google Scholar 

  7. González, C., Llorca, J.: A self-consistent approach to the elasto-plastic behaviour of two phase materials including damage. J. Mech. Phys. Solids48, 675–692 (2000).

    Google Scholar 

  8. Wu, M. S., Guo, J.: Analysis of a sector crack in a three-dimensional Voronoi polycrystal with microstructural stresses. Trans. ASME, J. Appl. Mech.67, 50–58 (2000).

    Google Scholar 

  9. Kocks, U. F., Tomé, C. N., Wenk, H.-R.: Texture and anisotropy: preferred orientations in polycrystals and their effect on materials properties, 1st ed. Cambridge University Press 1998.

  10. Anderson, M. P., Srolovitz, D. J., Grest, G. S., Sahni, P. S.: Computer simulation of grain growth-I. Kinetics. Acta Metall.32, 783–791 (1984).

    Google Scholar 

  11. Humphreys, F. J., Hatherly, M.: Modelling mechanisms and microstructures of recrystallisation. Mater. Sci. Tech.8, 135–143 (1992).

    Google Scholar 

  12. Novikov, V. I.: Grain growth and control of microstructure and texture in polycrystalline materials, 1st ed. Boca Raton: CRC Press 1997.

    Google Scholar 

  13. Anderson, M. P., Grest, G. S., Srolovitz, D. J.: Grain growth in three dimesion: a lattice model. Scripta Metall.19, 225–230 (1985).

    Google Scholar 

  14. Mehnert, K., Klimanek, P.: In: Proceedings of an International Conference on Texture, Sept. 1997, Clausthal, Germany (Schwarzer, R. Bunge, H. J. eds.) Trans. Aedermannsdorf: Tech. Publications 1998.

  15. Roe, R.-J., Krigbaum, W. R.: Description of crystallite orientation in polycrystalline materials having fiber texture. J. Chem. Phys.40, 2608–2615 (1964).

    Google Scholar 

  16. Rose, M. E.: Elementary theory of angular momentum. New York: Wiley 1957.

    Google Scholar 

  17. Mathews, J., Walker, R. L.: Mathematical methods of physics. W. A. Benjamin 1970.

  18. Nye, J. F.: Physical properties of crystals: Their representation by tensors and matrices, 2nd ed. Oxford, UK: Oxford Science Publications 1985.

    Google Scholar 

  19. Eshelby, J. D.: The determination of elastic field of an ellipsoid and related problems. Proc. R. Soc.241A, 376–396 (1957).

    Google Scholar 

  20. Eshelby, J. D.: The elastic field outside an elliptical inclusion. Proc. R. Soc.252A, 561–569 (1959).

    Google Scholar 

  21. Eshelby, J. D.: Elastic inclusions and inhomogeneities. Prog. in Solid. Mech., Vol. 2, (Sneddon, I. N., Hill, R., eds.), pp. 89–140. Amsterdam: North-Holland 1961.

    Google Scholar 

  22. Kröner, E.: Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls. Z. Phys.51, 504–518 (1958).

    Google Scholar 

  23. Kröner, E.: Zur plastischen Verformung des Vielkristalls. Acta Metall.9, 155–161 (1961).

    Google Scholar 

  24. Kneer, G.: Uber die Berechnung der Elastizitätsmoduln vielkristalliner Aggregate mit Textur. Phys. Status Solidi9, 825–838 (1965).

    Google Scholar 

  25. Morris, P.: Elastic constants of polycrystals. Int. J. Engng Sci.8, 49–61 (1970).

    Google Scholar 

  26. Bunge, H. J., Kiewel, R., Reinert, Th., Fritsche, L.: Elastic properties of polycrystals-influence of texture and stereology. J. Mech. Phys. Solids48, 29–66 (2000).

    Google Scholar 

  27. Tvergaard, V., Hutchinson, J. W.: Microcracking in ceramics induced by thermal expansion or elastic anisotropy. J. Am. Ceram. Soc.71, 157–166 (1988).

    Google Scholar 

  28. Oritz, M., Suresh, S.: Statistical properties of residual stresses and intergranular fracture in ceramic materials. Trans. ASME, J. Appl. Mech.60, 77–84 (1993).

    Google Scholar 

  29. Nozaki, H., Taya, M.: Elastic fields in a polygon-shaped inclusion with uniform eigenstrains. Trans. ASME, J. Appl. Mech.64, 495–502 (1997).

    Google Scholar 

  30. Waldvogel, J.: The Newtonian potential of homogeneous polyhedra. ZAMP30, 388–398 (1979).

    Google Scholar 

  31. Rodin, G. J.: Eshelby's inclusion problem for polygons and polyhedra. J. Mech. Phys. Solids44, 1977–1995 (1996).

    Google Scholar 

  32. Jasiuk, I., Chen, J., Thorpe, M. F.: Elastic moduli of two-dimensional materials with polygonal and elliptic holes. Appl. Mech. Rev.47, 18–28 (1994).

    Google Scholar 

  33. Jasiuk, I.: Various vis-a-vis rigid inclusions: elastic moduli of materials with polygonal inclusions. Int. J. Solids Struct.32, 407–422 (1995).

    Google Scholar 

  34. Wu, L. Z., Du, S. Y.: The elastic field with hemispherical inclusion. Proc. R. Soc. Lond.455A, 879–891 (1999).

    Google Scholar 

  35. Mura, T.: A theory of fracture with a polygonal shape crack. In: Small fatigue cracks: mechanics and mechanisms (Ravichandran, K. S., Ritchie, R. O., Murakami, Y., eds.), pp. 3–15. London: Elsevier 1999.

    Google Scholar 

  36. Ru, C. Q.: Analytic solution for Eshelby's problem of an inclusion of arbitrary shape in a plane or half-plane. Trans. ASME, J. Appl. Mech.66, 315–322 (1999).

    Google Scholar 

  37. Simmons, G., Wang, H.: Single crystal elastic constants and calculated aggregate properties: A handbook, 2nd edn. Cambridge: MIT Press 1970.

    Google Scholar 

  38. Zeng, X.-H., Ericsson, T.: Anisotropy of elastic properties in various aluminium-lithium sheet alloys. Acta Mater.44, 1801–1812 (1996).

    Google Scholar 

  39. Yang, S. W.: Elastic constants of a monocrystalline nickel-based superalloy. Metall. Trans.16A, 661–665 (1985).

    Google Scholar 

  40. Bunge, H. J.: Texture analysis in materials science, 1st ed. London: Butterworths 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X.D. Numerical correlation of material structure weaknesses in anisotropic polycrystalline materials. Acta Mechanica 155, 137–155 (2002). https://doi.org/10.1007/BF01176239

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01176239

Keywords

Navigation