Skip to main content
Log in

On the gas loss from ventilated supercavities

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

A theory for the gas loss in high Froude number flows is constructed on the assumption that the gas loss in ventilated supercavities is caused by entrainment of the gas into the boundary layers on the walls of the cavity which act as moving foils. The theory is in good agreement with experiments for both turbulent and laminar flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cox, P. N., Clayden, W. A.: Air entrainment at the rear of a steady cavity. In: Proc. Symposium, Nat. Phys. Lab., London 1955.

  2. Epshtein, L. A.: Metody teorii razmernostey i podobiya v zadachakh gidromekhaniki sudov. Leningrad Sudostroyeniya 1970. (Translation by Department of the Navy, Translation Division: Methods of the dimensional analysis and similarity theory in problems of ship hydrodynamics, pp. 134–145.)

  3. Logvinovich, G. V.: Hydrodynamics of free-boundary flows, pp. 129–133. (Translated from Russian, Israel Program for Scientific Translation Jerusalem, Kiev: Izdaltel'stvo Naukova Dumka, 1969.)

  4. Semenenko, V. N.: Artificial supercavitation. Physics and calculation. In: RTO AVT/VKI Special Course “Supercavitating Flows” (Tulin, M. P., Masure, B., Van den Braembussche, R. A., eds.), February 2001.

  5. Bürger, K.-H.: Private communication (April 2001).

  6. Semenenko, V. N.: Dynamic processes of supercavitation and computer simulation. In: RTO AVT/VKI Special Course “Supercavitating Flows” (Tulin, M. P., Masure, B., Van den Braembussche, R. A., eds.) February 2001.

  7. Garabedian, P. R.: Calculation of axially symetric cavities and jets. Pacific J. Math.6, 611–684 (1956).

    Google Scholar 

  8. Betz, A., Petersohn, E.: Anwendungen der Theorie freier Strahlen. Ing. Archiv.2, 190–211 (1932).

    Google Scholar 

  9. Birkhoff, G., Zarantonello, E. H.: Jets, wakes and cavities. New York: Academic Press 1957, pp. 8–9, pp. 251–257.

    Google Scholar 

  10. Sakiades, B. C.: Boundary layer on continuous solid surfaces: I. Boundary layer equations for two-dimensional and axisymmetric flow. A. I. Ch. E. Journal7, 26–28 (1961).

    Google Scholar 

  11. Sakiades, B. C.: Boundary layer on continuous solid surfaces: II. The boundary layer on a continuous flat surface. A. I. Ch. E. Journal7, 221–225 (1961).

    Google Scholar 

  12. Sakiades, B. C.: Boundary layer on continuous solid surfaces: III. The boundary layer on a continuous cylindrical surface. A. I. Ch. E. Journal7, 467–472 (1961).

    Google Scholar 

  13. Simon, V.: Private communication (1993).

  14. Spurk, J. H.: Fluid mechanics, problems and solutions. Berlin: Springer 1997, pp. 600–601.

    Google Scholar 

  15. Spurk, J. H.: Fluid mechanics. Berlin: Springer 1997, pp. 447–448.

    Google Scholar 

  16. Schlichting, H.: Grenzschicht-Theorie. Fünfte Aufl., Karlsruhe: Verlag G. Braun 1964, pp. 618–644.

    Google Scholar 

  17. Schubauer, G. B., Tchen, C. M.: Turbulent flow. Princeton Aeronautical Paperbacks No. 9. Princeton, NJ: Princeton University Press 1961, pp. 47–84.

    Google Scholar 

  18. White, C. R.: Viscous fluid flow. New York: McGraw-Hill 1974.

    Google Scholar 

  19. Savchenko, Y. N.: Investigation of high-speed supercavitating underwater motion of bodies. In: High-speed motion in water. AGARD Report827, 20-1–20-12 (1998).

  20. May, A.: Water entry and the cavity running behavior of missile, chapter 2: The forces acting on cavity-running missiles. NAVSEA Hydroballistic Advisory Committee Silver Spring, Maryland 1975. (NTIS US Department of Commerce.)

    Google Scholar 

  21. Birkhoff, G.: Hydrodynamics, Princeton, NJ: Princeton University Press 1960, pp. 115–116.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spurk, J.H. On the gas loss from ventilated supercavities. Acta Mechanica 155, 125–135 (2002). https://doi.org/10.1007/BF01176238

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01176238

Keywords

Navigation