Skip to main content
Log in

An examination of yield surface distortion and translation

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

It is shown that the components of a sixth rank anisotropy tensor are physically significant in representing the distortion observed in both the initial and subsequent yield surface for a polycrystalline material. This feature of anisotropy does not appear in the ellipsoidal surface given by previous theories in which second and fourth rank anisotropy tensors are employed. The number of tensor components, for a series function embodying tensor terms in ascending rank, reduces to a manageable number by the imposition of symmetry and coincidence between the axes of stress and principal orthotropic directions. The identification is made between the yield limits, as found from biaxial stress experiments and tensor components in composite sum form. A one-to-one correspondence is found from a further simplification through the assumption of incompressibility. This is confirmed experimentally for an orthotropic rolled copper and copper alloy sheet.

An examination is made of the physical significance of a translation tensor which appears in the subsequent yield function. It is shown that the components of this tensor can be directly identified with those of an internal stress tensor that is a consequence of the heterogenous slipped state in a deformed polycrystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dubey, R. N., Hillier, M. J.: Yield criteria and the Bauschinger effectfor a plastic solid. J. Basic Eng., Trans. ASME Ser. D, 228–237 (1972).

  2. Betten, J.: Plastische Anisotropie und Bauschinger-Effekt; allgemeine Formulierung und Vergleich mit experimentell ermittelten Fließortkurven. Acta Mechanica25, 79–94 (1976).

    Google Scholar 

  3. Betten, J.: Plastische Stoffgleichungen inkompressibler anisotroper Werkstoffe. ZAMM57, 671–673 (1977).

    Google Scholar 

  4. Betten, J.: Ein Beitrag zur Invariantentheorie in der Plastomechanik anisotroper Werkstoffe. ZAMM56, 557–559 (1976).

    Google Scholar 

  5. Betten, J.: Elastizitäts- und Plastizitätstensor 4ter Stufe. ZAMM55, 271 (1975).

    Google Scholar 

  6. Betten, J.: Theory of invariants in creep mechanics of anisotropic materials. Proc. Euromech Coll. 115, Mechanical behaviour of anisotropic solids, Grenoble, June 1979 (Boehler, J. P., ed.).

  7. Malmeisters, A. K., Tamuzs, V. P.: Description of deformation and fracture of anisotropic solids. Proc. Euromech Coll. 115, Mechanical behaviour of anisotropic solids, Grenoble, June 1979 (Boehler, J. P., ed.).

  8. Wu, E. M.: Optimal experimental measurements of anisotropic failure tensors. J. Composite Materials6, 472–489 (1972).

    Google Scholar 

  9. Tsai, S. W., Wu, E. M.: A general theory of strength for anisotropic materials. J. Composite Materials5, 58–80 (1971).

    Google Scholar 

  10. Sobotka, Z.: Tensorial expansions for flow rules and yield criteria of anisotropic solids. Proc. Int. Coll., Plastic behaviour of anisotropic solids, CNRS 319, Inst. de Mécanique, Grenoble, June 1981 (Boehler, J. P., ed.).

  11. Hill, R.: A theory of yielding and plastic flow of anisotropic metals. Proc. Roy. Soc.193A, 281–297 (1948).

    Google Scholar 

  12. Sobotka, Z.: Theorie des plastischen Fließens von anisotropen Körpern. ZAMM49, 25–32 (1969).

    Google Scholar 

  13. Rees, D. W. A.: A hardening model for anisotropic materials. Expl. Mech.21, 245–254 (1981).

    Google Scholar 

  14. Rees, D. W. A.: Yield functions that account for the effects of initial and subsequent plastic anisotropy. Acta Mechanica43, 223–241 (1982).

    Google Scholar 

  15. Dillamore, I. L., Hazel, R. J., Watson, T. W., Hadden, P.: An experimental study of the mechanical anisotropy of some common metals. Inst. J. Mech. Sci.13, 1049–1061 (1971).

    Google Scholar 

  16. Shih, C. F., Lee, D.: Further developments in anisotropic plasticity. J. Eng. Mat. Tech., Trans. ASME100, 294–302 (1978).

    Google Scholar 

  17. Prager, W.: A new method of analysing stresses and strains in work-hardening plastic solids. J. Appl. Mech., Trans ASME23, 493–496 (1956).

    Google Scholar 

  18. Rees, D. W. A.: A review of stress-strain paths and constitutive relations in the plastic range. J. Strain Anal.16, 235–249 (1981).

    Google Scholar 

  19. Rees, D. W. A.: On the motion of the yield surface. (In preparation.)

  20. Moreton, D. N., Moffat, D. G., Parkinson, D. B.: The yield surface behaviour of pressure vessel steels. J. Strain Anal.16, 127–136 (1981).

    Google Scholar 

  21. Phillips, A., Tang, J. L.: The effect of loading path on the yield surface at elevated temperatures. Inst. J. Solids and Structures8, 463–474 (1972).

    Google Scholar 

  22. Shiratori, E., Ikegami, K., Kaneko, K.: The subsequent yield surface determined in consideration of the Bauschinger effect. Trans Japan Soc. Mech. Engrs.39, 458–471 (1973).

    Google Scholar 

  23. Mellor, P. B.: Experimental studies of plastic anisotropy in sheet metal. Mechanics of solids (The Rodney Hill 60th Aniversary Vol.), (Hopkins, H. G., Sewell, M. J., eds.), pp. 383–418. Pergamon Press 1982.

  24. Phillips, A., Weng, G. J.: An analytical study of an experimentally verified hardening law. J. App. Mech., Trans ASME42, 375–378 (1975).

    Google Scholar 

  25. Williams, J. F., Svensson, N. L.: Effect of torsional prestrain on the yield locus of 1100 F aluminium. J. Strain Anal.6, 263–272 (1971).

    Google Scholar 

  26. Williams, J. F., Svensson, N. L.: Effect of tensile prestrain on the yield locus of 1100 F aluminium. J. Strain Anal.5, 128–139 (1970).

    Google Scholar 

  27. Shiratori, E., Ikegami, K., Yoshida, F.: Analysis of stress-strain relations by use of an anisotropic hardening plastic potential. J. Mech. Phys. Solids27, 213–229 (1979).

    Google Scholar 

  28. Bland, D. R.: The two measures of work-hardening. Proc. 9th Int. Conf. Appl. Mech.8, 45–50 (1957).

    Google Scholar 

  29. Johnson, W., Mellor, P. B.: Engineering plasticity. Van Nostrand Reinhold 1980.

  30. Ziegler, H.: A modification to Prager's hardening rule. Quart. App. Math.17, 55–65 (1959).

    Google Scholar 

  31. Rees, D. W. A.: On isotropy and anisotropy in the theory of plasticity. Proc. Roy. Soc. LondonA 383, 333–357 (1982).

    Google Scholar 

  32. Backhaus, G.: Zum Stoffgesetz des elastisch-plastischen Körpers. ZAMM52, T293-T305 (1972).

    Google Scholar 

  33. Eisenberg, M. A., Phillips, A.: On non-linear kinematic hardening. Acta Mechanica5, 1–13 (1968).

    Google Scholar 

  34. Nicholson, D. W.: On hardening and yield surface motion in plasticity. Acta Mechanica21, 193–207 (1975).

    Google Scholar 

  35. Rees, D. W. A.: A theory of non-linear anisotropic hardening. Proc. I. Mech. E.197 C, 31–41 (1983).

    Google Scholar 

  36. Ramberg, W., Osgood, W.: Description of stress-strain curves by three parameters. NACA TN 902 (1943).

  37. Chaboche, J. L.: Viscoplastic constitutive equations for the description of cyclic and anisotropic behaviour of metals. Bull. de l'Académie Pol. des Sci.25, 39–42 (1977).

    Google Scholar 

  38. Kafka, V.: The general theory of isothermal elastic-plastic deformation of polycrystalls based on an analysis of the microscopic state of stress. ZAMM4, 265–282 (1968).

    Google Scholar 

  39. Kröner, E.: Zur plastischen Verformung des Vielkristalls. Acta Metall.9, 155–161 (1961).

    Google Scholar 

  40. Eshelby, J. D.: Elastic inclusions and inhomogeneities. Progress in solid mechanics II, 87–140 (1961).

    Google Scholar 

  41. Taylor, G. I.: Plastic deformation of metals. J. Inst. Metals62, 307–324 (1938).

    Google Scholar 

  42. Hill, R.: Continuum micro-mechanics of elasto-plastic polycrystalls. J. Mech. Phys. Solids13, 89–101 (1965).

    Google Scholar 

  43. Berveiller, M., Zaoui, A.: Extension of the self-consistent scheme to plastically-flowing polycrystalls. J. Mech. Phys. Solids26, 325–344 (1979).

    Google Scholar 

  44. Tokuda, M., Kratochivil, J., Ohashi, Y.: Mechanism of induced plastic anisotropy of polycrystalline metals. Phys. stat. sol. (a)68, 629–636 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 8 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rees, D.W.A. An examination of yield surface distortion and translation. Acta Mechanica 52, 15–40 (1984). https://doi.org/10.1007/BF01175962

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01175962

Keywords

Navigation