Skip to main content
Log in

Metal triangles as building blocks in metal cluster chemistry

  • Reviews
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Many trinuclear metal clusters have structures based on isolated metal triangles with either single bonds (e.g.,M 3(CO)12 whereM = Fe, Ru, Os) or double bonds (e.g., Re3 Cl 3−12 ) along each edge of the triangle. Individual metal triangles can be joined in the following ways to form more complicated triangulated networks: (1) Bridging an edge of a triangle with a new vertex to give rafts in which adjacent triangles share edges; (2) Bridging a vertex of a triangle with a new edge to give bowties in which adjacent triangles share vertices; (3) Capping a triangular face with a new vertex to give a chain of tetrahedra in which adjacent tetrahedra share faces. Such triangulated metal networks are particularly common in osmium carbonyl chemistry and in mixed osmium/platinum carbonyl derivatives. Platinum triangles of the type Pt3L6 are analogous to cyclopropenyl rings and can form sandwiches with one or two mercury atoms in the center such as the mercuric derivative Hg[Pt.32-2,6-Me2C6H3NC)3] (2,6-Me2C6H3NC)3]2 and the “mercurous” derivative Hg2[Pt32-CO)3L3]2. Platinum triangles can also be stacked in the absence of “filling” to give [Pt32-CO)3(CO)3] 2− n (n=2, 3, 4, 5, 6, 10). Metal triangles also form the faces of metal deltahera of which the octahedron, bicapped square antiprism, and icosahedron are found in globally delocalized transition metal clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. B. King (1994).J. Organometal. Chem. 478, 13.

    Google Scholar 

  2. R. J. Puddephatt, L. Manojlović-Muir, and K. W. Muir (1990).Polyhedron 9, 2767.

    Google Scholar 

  3. E. R. Corey and L. F. Dahl (1962).Inorg. Chem. 1, 521.

    Google Scholar 

  4. C. H. Wei and L. F. Dahl (1969).J. Am. Chem. Soc. 91, 1351.

    Google Scholar 

  5. J. C. Calabrese, L. F. Dahl, P. Chini, G. Longoni, and S. Martinengo (1974).J. Am. Chem. Soc. 96, 2614.

    Google Scholar 

  6. E. R. Corey, L. F. Dahl, and W. Beck (1963).J. Am. Chem. Soc. 85, 1202,

    Google Scholar 

  7. S. P. Gubin (1985).Russ. Chem. Revs. 54, 305.

    Google Scholar 

  8. R. B. KingApplications of Graph Theory and Topology ni Inorganic Cluster and Coordination Chemistry (CRC Press, Boca Raton, Florida, 1993).

    Google Scholar 

  9. L. F. Dahl E. Ishishi, and R. E. Rundle (1957).J. Chem. Phys.26, 1750.

    Google Scholar 

  10. R. Desiderata, Jr. and G. R. Dobson (1982).J. Chem. Ed. 59, 752.

    Google Scholar 

  11. W. Hieber and E. Becker (1930),Ber. 63, 1405.

    Google Scholar 

  12. W. Hieber and H. Stallman (1943).Z. Electrochem. 49, 288.

    Google Scholar 

  13. R. E. Benfield and B. F. G. Johnson (1980).J. Chem. Soc. Dalton 1743.

  14. B. F. G. Johnson and Y. V. Roberts (1993).Polyhedron 12, 977.

    Google Scholar 

  15. J. A. Bertrand, F. A. Cotton, and W. A. Dollase (1963)Inorg. Chem. 2, 1166.

    Google Scholar 

  16. S. F. A. Kettle (1965).Theor. Chim. Acta 3, 282.

    Google Scholar 

  17. D. P. Craig, A. Maccoll, R. S. Nyholm, L. E. Orgel, and L. E. Sutton (1954).J. Chem. Soc. 332.

  18. P. A. Koz'min (1972).Dokl. Akad. Nauk SSSR 206, 1384.

    Google Scholar 

  19. R. B. King (1986).Inorg. Chim. Acta 116, 109.

    Google Scholar 

  20. R. B. King (1994).J. Chem. Inf. Comput. Sci. 34, 410.

    Google Scholar 

  21. R. D. Adams, G. Chen, J.-C. Lii, and W. Wu (1991).Inorg. Chem. 30, 1007.

    Google Scholar 

  22. P. Sundberg (1987).Chem. Commun. 1307.

  23. Y. Yamamoto, H. Yamazaki, and T. Sakurai (1982).J. Am. Chem. Soc. 104, 2329.

    Google Scholar 

  24. A. Albinati, A. Moor, P. S. Pregosin, and L. M. Venanzi (1982).J. Am. Chem. Soc. 104, 7672.

    Google Scholar 

  25. D. Grdenić (1965).Quart. Revs. 19, 303.

    Google Scholar 

  26. G. Longoni and P. Chini (1976).J. Am. Chem. Soc. 98, 7225.

    Google Scholar 

  27. A. C. Skapski and P. G. H. Troughton (1969),J. Chem. Soc. A 2772.

  28. D. J. Underwood, R. Hoffmann, K. Tatsumi, A. Nakamura, and Y. Yamamoto (1985).J. Am. Chem. Soc. 107, 5968.

    Google Scholar 

  29. C. Mealli (1985).J. Am. Chem. Soc. 107, 2245.

    Google Scholar 

  30. R. B. King (1986).Inorg. Chim. Acta 116, 119.

    Google Scholar 

  31. R. B. King,in R. B. King (ed.),Chemical Applications of Topology and Graph Theory (Elsevier Scientific Publishing Company, Amsterdam, 1983), pp. 99–123.

    Google Scholar 

  32. R. B. King and D. H. Rouvray (1977).J. Am. Chem. Soc. 99, 7834.

    Google Scholar 

  33. V. G. Albano, P. L. Bellon and G. F. Ciani (1969).Chem Comm. 1024.

  34. R. B. King and A. J. W. Duijvestijn (1990).Inorg. Chim. Acta 178, 55.

    Google Scholar 

  35. A. Ceriotti G. Longoni, M. Manassero, M. Perego, and M Sansoni (1985).Inorg. Chem. 24, 117.

    Google Scholar 

  36. A. Ceriotti, F. Demartin, B. T. Heaton, P. Ingallina, G. Longoni, M. Manassero, M. Marchionna, and N. Masciocchi (1989).Chem. Comm. 786.

  37. J. L. Vidal and J. M. Troop (1981).J. Organometal. Chem. 213, 351.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is dedicated to Prof. L. F. Dahl in recognition of his many seminal contributions to metal cluster chemistry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, R.B. Metal triangles as building blocks in metal cluster chemistry. J Clust Sci 6, 5–20 (1995). https://doi.org/10.1007/BF01175833

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01175833

Key Words

Navigation