Summary
This paper deals with the substantiation of a shear deformable theory of cross-ply laminated composite shallow shells. While the developed theory preserves all the advantages of the first order transverse shear deformation theory it succeeds in eliminating some of its basic shortcomings. The theory is further employed in the analysis of the eigenvibration and static buckling problems of doubly curved shallow panels. In this context, the state space concept is used in conjunction with the Lévy method, allowing one to analyze these problems in a unified manner, for a variety of boundary conditions. Numerical results are presented and some pertinent conclusions are formulated.
This is a preview of subscription content, access via your institution.
References
Hildebrand, F. B., Reissner, E., Thomas, G. B.: Notes on the foundations of the theory of small displacements of orthotropic shells. NACA-TN-1633, March 1949.
Naghdi, P. M.: On the theory of thin elastic shells. Quart. Appl. Mathematics114, 4, 369–380 (1957).
Naghdi, P. M.: The theory of shells and plates. In: Handbuch der Physik VIa/2 (Flügge, S., ed.), pp. 425–640. Berlin-Heidelberg-New York: Springer 1972.
Ambartsumian, S. A.: General theory of anisotropic shells. (In Russian), Moscow: Nauka 1974.
Librescu, L.: Elastotatics and kinetics of anisotropic and heterogeneous shell-type structures. Leyden: Noordhoff Internat. Publ. 1975.
Galimov, K. Z.: The theory of shells with transverse shear effects. (In Russian), Kazan Univ. 1977.
Reddy, J. N.: Energy and variational methods in applied mechanics. New York: John Wiley 1984.
Librescu, L.: Refined geometrically nonlinear theories of anisotropic laminated shells. Quart. Appl. Mathematics1, (1–22), 1987.
Naghdi, P. M.: Foundations of elastic shell theory. In: Progress of Solid Mechanics, (Sneddon, I. N., Hill, R., eds.) 4, 1, 1963.
Green, A. E., Zerna, W.: Theoretical elasticity. Oxford: At the Clarendon Press 1968.
Hsu, T. M., Wang, J. T.: A theory of laminated cylindrical shells consisting of layers of orthotropic laminae. AIAA Journal8, 12, 2141–2146 (1970).
Librescu, L., Reddy, J. N.: A generalization of the theory of anisotropic laminated composite plates. Proceedings of the American Society for Composites, Dayton, Ohio, October 1986, Technomic Publ. Co., pp. 472–489.
Reddy, J. N., Liu, C. F.: A higher-order shear deformation theory of laminated elastic shells. Int. J. Engng. Sci.23, 3, 319–330 (1985).
Reddy, J. N., Liu, C. F.: A higher-order theory for geometrically nonlinear analysis of composite laminates. NASA Cr. Rept. 4656. March 1987.
Biot, M. A.: Dynamics of viscoelastic anisotropic media. Proc. of the Second Midwestern Conf. on Solid Mechanics, Purdue University, 1955, pp. 94–108.
Sheremetiev, M. P., Pelech, B. L.: On the construction of a refined theory of plates. Injenernui Zhurnal (in Russian)4, 3, 504–509 (1964).
Schmidt, R.: A refined nonlinear theory of plates with transverse shear deformation. J. Industrial Mathematics Soc.27, 1, 23–38 (1977).
Levinson, M.: An accurate simple theory of the statics and dynamics of elastic plates. Mech. Res. Commun.7, 343–350 (1980).
Murthy, M. V. V.: An improved transverse shear deformation theory for laminated anisotropic plates. NASA Techn. Paper 1903, Nov 1981.
Reddy, J. N.: A simple higher-order theory for laminated composite plates. J. Appl. Mech., Trans. ASME51, 745–752 (1984).
Bert, C. W.: A critical evaluation of new plate theories applied to laminated composites. Composite Structures2, 329–347 (1984).
Reddy, J. N.: A refined shear deformation theory for the analysis of laminated plates. NASA CR Rept. 3955, Jan 1986.
Librescu, L., Reddy, J. N.: A general transverse shear deformation theory of anisotropic plates. In: Refined dynamical theories of beams, plates and shells and their applications. (Elishakoff, I., Irretier, H., eds.) pp. 32–43. Springer 1987.
Librescu, L., Khdeir, A. A., Reddy, J. N.: A comprehensive analysis of the state of stress of elastic anisotropic flat plates using refined theories. Acta Mechanica70, 57–81 (1987).
Librescu, L.: Nonlinear theory of elastic anisotropic, multilayered shells. (In Russian) In: Selected topics in applied mechanics (Sedov, L. I., ed.), pp. 453–466. Moscow: Nauka 1974.
Librescu, L.: Improved linear theory of elastic anisotropic multilayered shells. (In Russian) Mekhanica Polimerov, Part I, 6, 1038–1050, Nov.–Dec. 1975 and Part II,1, 100–109, Jan.–Feb. 1976 (English Translation by Plenum Publ. Corp.).
Yang, P. C., Norris, C. H., Stavsky, Y.: Elastic wave propagation in heterogeneous plates. Int. Journal of Solids and Structures2, 665–684 (1965).
Whitney, J. M., Pagano, N. J.: Shear deformation in heterogeneous anisotropic plates. J. of Applied Mechanics, Trans. ASME37, 1031–1036 (1970).
Librescu, L.: Elastische Mehrschichtenschalen. Revue de Mécanique Appliquée5, 401–415 (1960).
Khdeir, A. A.: Free vibration of antisymmetric angle-ply laminated plates including various boundary conditions. J. Sound and Vibration122, 377–388 (1988).
Reddy, J. N.: Khdeir, A. A., Librescu, L.: Lévy type solutions for symmetrically laminated rectangular plates using first-order shear deformation theory. J. Appl. Mech., Trans. ASME54, 740–742 (1987).
Khdeir, A. A., Reddy, J. N., Librescu, L.: Analytical solutions of a refind shear deformation theory for rectangular composite plates, Int. J. Solids and Structures23, 1447–1463 (1987).
Librescu, L., Khdeir, A. A.: An exact solution to the aeroelastic divergence of sweptforward composite wings accounting for their warping restraint effect. AIAA Journal (to appear).
Soldatos, K. P., Tzivanidis, G. J.: Buckling and vibration of cross-ply laminated circular cylindrical shell panels. ZAMP33, 229–240 (1982).
Ashton, J. E., Whitney, J. M.: Theory of laminated plates. Stanford: Technomic 1970.
Jones, R. M.: Mechanics of composite materials. McGraw-Hill 1975.
Reissner, E.: On the theory of bending of elastic plates. J. Math. Phys.23, 184–191 (1944).
Reissner, E.: Reflections on the theory of elastic plates. Appl. Mech. Rev.38, 1453–1464 (1985).
Librescu, L.: Sur les équations de la théorie linéaire des plaques élastiques anisotropes. Comptes Rendues de l'Académie de Science, Paris T267, A, 443–446 (1968).
Librescu, L.: The elasto-kinetic problem in the theory of anisotropic shells and plates, II. Plate Theory, Revue Roumaine des Sciences Techniques-Mécanique Appliquée14, 3, 637–654 (1969).
Ambartsumian, S. A.: Theory of anisotropic plates (Ashton, J. E., ed.). Stanford: Technomic 1970.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Librescu, L., Khdeir, A.A. & Frederick, D. A shear deformable theory of laminated composite shallow shell-type panels and their response analysis I: Free vibration and buckling. Acta Mechanica 76, 1–33 (1989). https://doi.org/10.1007/BF01175794
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01175794
Keywords
- State Space
- Fluid Dynamics
- Shear Deformation
- Free Vibration
- Response Analysis