Skip to main content
Log in

Approximate solution of inverse shock-free transonic airfoil problem at zero incidence

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The present work extends the approximate analytical solution of Niyogi [9] for shock-free transonic flow past thin symmetric airfoils at zero incidence, to the inverse problem for which the velocity distribution is prescribed and the airfoil shape is to be determined. The first step in the solution of the inverse problem leads to a singular integral equation of Betz's type solution of which has been improved iteratively using the transonic integral equation of Oswatitsch and satisfying the tangency boundary condition on the profile contour. Computational results have been presented for Nieuwland airfoils and a NACA 0012 airfoil, all of which indicate very good agreement with exact solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beorstoel, J. W.: Review of application of hodograph theory to transonic airfoil design and theoretical and experimental analysis of shock free airfoils. Symposium Transonicuum II, pp. 109–133 (Oswatitsch, K., Rues, D., eds.). Springer-Verlag 1975.

  2. Sobieczky, H.: Entwurf überkritischer Profile mit Hilfe der rheoelektrischen Analogie. DLR-FB 75-43, Germany, 1975.

  3. Bauer, F., Garabedian, P., Korn, D., Jameson, A.: Supercritical wings II. Lecture Notes in Economics and Mathematical Systems No. 108. Springer-Verlag 1975.

  4. Hicks, R. M., Murman, E. M., Vanderplaats, G. N.: An assessment of airfoil design by numerical optimization. NASA TMX 3092, 1974.

  5. Vanderplaats, G. N., Hicks, R. M., Murman, E. M.: Application of numerical optimisation techniques to airfoil design. NASA SP 347, pp. 749–768, Aerodynamic analysis requiring advanced computer, part II, U.S.A., 1975.

  6. Eggleston, B., Jones, D. J.: The design of lifting supercritical airfoils using a numerical optimization method. Canadian Aeronautics and Space Journal23 (3), 172–181 (1977).

    Google Scholar 

  7. Hansen, H.: Entwurf von Tragflügelprofilen für schallnahe Anströmung nach der Integralmethode. Zeit. für Flugwiss.24, 340–349 (1976).

    Google Scholar 

  8. Niyogi, P., Sen, S.: Symmetric transonic shock-free airfoil design. Bulletin Calcutta Math. Soc.74, 291–298 (1982).

    Google Scholar 

  9. Niyogi, P.: Shock-free transonic flow past symmetric profiles at zero incidence. Bulletin Cal. Math. Society68, 77–86 (1976).

    Google Scholar 

  10. Oswatitsch, K.: Die Geschwindigkeitsverteilung an symmetrischen Profilen beim Auftreten lokaler Überschallgebiete. Acta Physica Austriaca4, 228–271 (1950). English translation in: Contributions to the development of gasdynamics (Schneider, W., Platzer, M., eds.), pp. 150–187. Braunschweig/Wiesbaden: Friedr. Vieweg and Sohn 1980.

    Google Scholar 

  11. Niyogi, P.: Integral equation method in transonic flow. Lecture Notes in Physics157, Springer-Verlag 1982.

  12. Niyogi, P., Das, T. K.: Direct computation of transonic solution for Nieuwland aerofoils. Acta Mechanica34, 285–289 (1979).

    Google Scholar 

  13. Weber, J.: The calculation of pressure distribution on the surface of thick cambered wings and the design of wings with given pressure distribution. ARC R and M 3026, London, 1957.

  14. Baurdoux, H. I., Boerstoel, J. W.: Symmetrical transonic potential flows around quasi-elliptical aerofoil sections. NLR TR 67007 U, Netherlands, 1968.

  15. Ahlberg, J. H., Nilson, E. N., Walsh, J. L.: The theory of splines and their applications. New York: Academic Press 1967.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 4 Figure

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basu, S., Niyogi, P. Approximate solution of inverse shock-free transonic airfoil problem at zero incidence. Acta Mechanica 70, 169–176 (1987). https://doi.org/10.1007/BF01174653

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01174653

Keywords

Navigation