Skip to main content
Log in

Modelling and simulation of the macromechanical nonlinear behaviour of fibre-reinforced ceramics on the basis of a micromechanical-statistical material description

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The modelling of the mechanical properties of a macrostructure, representative of the total structure, is demonstrated by the example of the unidirectional SiC fibre-reinforced SiC composite. The macrostructure is modelled from a suitable number of substructures, based on the properties of the individual phases and their interactions. The numerical access in the model is accomplished by means of the Finite Element Method (FEM). In numerical simulations, the statistically verified events of damage in the macrostructure are described. Finally the effect of important parameters like the fibre number, the fibre-matrix friction and the fibre Weibull parameter on the nonlinear behaviour of the macrostructure will be examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Phillips, D. C.: Fibre reinforced ceramics. In: Survey of the technological requirements for high temperature materials R&D — Section 3: Ceramics composites for high temperature engineering applications (Davidge, R. W., ed.), pp. 48–73. Luxembourg: Commission of The European Communities 1985.

    Google Scholar 

  2. Ziegler, G.: Hochfeste faserverstärkte Verbundwerkstoffe mit keramischer Matrix. Symposiumsband BMFT-Materialforschung 1988, Hamm 1988.

  3. Ziegler, G.: Keramik — eine Werkstoffgruppe mit Zukunft. Metall41, 682–695 (1987).

    Google Scholar 

  4. Ziegler, G.: Entwicklungstendenzen der Hochleistungskeramik. Ceramic Forum International — Bericht der DKG 68/3, 72–79 (1991).

  5. Rouby, D.: Verbundwerkstoffe aus keramischen Fasern und keramischen Matrizen. Ceramic Forum International — Bericht der DKG 66/5-6, 208–216 (1989).

  6. Hoffman, O.: The brittle strength of orthotropic materials. J. Comp. Mat.1, 200–206 (1967).

    Google Scholar 

  7. Sutcu, M.: Weibull statistics applied to fiber failure in ceramic composites and work of fracture. Acta Metall.37, 651–661 (1989).

    Google Scholar 

  8. Ismar, H., Reinert, U.: Modelling of the micromechanical behaviour of unidirectional fibre-reinforced ceramics by the example of SiC/SiC. Arch. Appl. Mech.66, 34–44 (1995).

    Google Scholar 

  9. De Borst, R., Nauta, P.: Non-orthogonal cracks in a smeared finite element model. Eng. Comput.2, 35–46 (1985).

    Google Scholar 

  10. Li, F. Z., Shih, C. F., Needleman, A.: A comparison of methods for calculating energy release rates. Engng. Fract. Mech.21, 405–421 (1985).

    Google Scholar 

  11. Stinton, D. P., Caputo, A. J., Lowden, A. L.: Synthesis of fiber-reinforced SiC composites by chemical vapor infiltration. Ceramic Bull.65, 347–350 (1986).

    Google Scholar 

  12. Köberle, H., Mühlratzer, A., Peetz, K.: CVI — produced ceramic composites. Proceedings of The 11th International Europan SAMPE Conference 1990, Basel 1990.

  13. Kaliszky, S.: Plastizitätslehre — Theorie und technische Anwendungen. Düsseldorf: VDI-Verlag 1984.

    Google Scholar 

  14. Prewo, K. M., Brennan, J. J., Layden, G. K.: Fiber reinforced glasses and glass-ceramics for high performance applications. Ceramic Bull.65, 305–313 (1986).

    Google Scholar 

  15. Chen, T., Dvorak, G. J., Benveniste, Y.: Stress fields in composites reinforced by coated cylindrically orthotropic fibers. Mech. Mat.9, 17–32 (1990).

    Google Scholar 

  16. Weihs, T. P., Dick, C. M., Nix, W. D.: The frictional resistance to sliding of a SiC fiber in a brittle matrix. Materials Research Society Symposium Proceedings120, 247–252 (1988).

    Google Scholar 

  17. Marshall, D. B., Oliver, W. C.: Measurement of interfacial mechanical properties in fiber-reinforced ceramic composites. J. Am. Ceramic Soc.70, 542–548 (1987).

    Google Scholar 

  18. Shafry, N., Brandon, D. G., Terasaki, M.: Interfacial friction and debond strength of aligned ceramic matrix composites. In: Euro-Ceramics I — Vol. 3: Engineering ceramics (de With, G., Terpstra, R. A., Metselaar, R. eds.). Elsevier 1989.

  19. Aboudi, J.: Micromechanical analysis of fibrous composites with Coulomb frictional slippage between the phases. Mech. Mat.8, 103–115 (1989).

    Google Scholar 

  20. Klaffke, D.: Reibung von Paarungen “Keramik/Keramik” und “Keramik/Metall”. VDI-Berichte Nr. 600.3, 105–120 (1989).

  21. Jahanmir, S., Deckman, D., Ives, L., Feldman, A., Farabaugh, E.: Tribological characteristics of synthesized diamond films on silicon carbide. Wear Mat.1, 375–379 (1989).

    Google Scholar 

  22. Köberle, H., Mühlratzer, A., Peetz, K.: Properties of ceramic matrix composites. In: Euro-Ceramics II — Vol. 2: Structural ceramics and composites (Ziegler, G., Hausner, H., eds.), pp. 1667–1671. Köln: DKG 1993.

    Google Scholar 

  23. Wantzen, B.: SiCarbid- und Siliziumnitrid-Fasern für den Hochtemperaturbereich. Magazin Neue Werkstoffe3, 24–25 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr.-Ing. Dr.-Ing. E. h. mult. Oskar Mahrenholtz on the occasion of his 65th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ismar, H., Reinert, U. Modelling and simulation of the macromechanical nonlinear behaviour of fibre-reinforced ceramics on the basis of a micromechanical-statistical material description. Acta Mechanica 120, 47–60 (1997). https://doi.org/10.1007/BF01174315

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01174315

Keywords

Navigation