Skip to main content
Log in

Consideration of processes on the microscale of metallic materials for the development of constitutive models

  • Invited Review Article
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Processes on the microscale determine the macroscopic behaviour of metallic materials and should therefore be considered during the development of constitutive macroscopic equations used for engineering calculations. The article reviews the mathematical formulation of the most significant of these processes, such as dislocation motion due to thermal and mechanical activation and the development of internal structures during plastic deformation. It describes the consideration of these relations in a stochastic model for the inelastic behaviour of metals and shows the comparison between predictions of this model and experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Conrad, H.: Thermally activated deformation of metals. J. Metals, 582–588 (1964).

  2. Nadgornyi, E.: Dislocation dynamics and mechanical properties of crystals. Prog. Mat. Sci.31, 1–535 (1988).

    Google Scholar 

  3. Kocks, U. F., Argon, A. S., Ashby, M. F.: Thermodynamics and kinetics of slip. Prog. Mat. Sci.19, 1–17 (1975).

    Google Scholar 

  4. Orowan, E.: Problems of plastic gliding. Proc. Phys. Society52, 8–22 (1940).

    Google Scholar 

  5. Nohara, A.: Dislocation-structure changes during the dip-tests and the dynamical internal stress in Al−Mg alloys at high temperatures. Phys. Stat. Sol. A88A, 213–222 (1985).

    Google Scholar 

  6. Barrett, C. R., Nix, W. D.: A model for steady state creep based on the motion of jogged screw dislocations. Acta Metall.13, 1247–1258 (1965).

    Google Scholar 

  7. Bengus, V. Z.: Effects of the dislocation collective behaviour in plasticity of single crystals. Cryst. Res. Technol.8, 757–761 (1984).

    Google Scholar 

  8. Frost, H. J., Ashby, M. F.: Motion of a dislocation acted on by a viscous drag through an array of discrete obstacles. Int. J. Non-Linear Mech.42, 5273–5279 (1971).

    Google Scholar 

  9. Balasubramanian, N., Li, J. C. M.: The activation areas for creep deformation. J. Mat. Sci.5, 434–444 (1970).

    Google Scholar 

  10. Kocks, U. F., Dawson, P. R., Follansbee, P. S.: Physical and phenomenological plasticity. Los Alamos, Center for Materials Science, LA-UR-86-2672 (1986).

  11. Frost, H. J., Ashby, M. F.: Deformation-mechanism maps. New York: Pergamon Press 1982.

    Google Scholar 

  12. Raj, S. V., Langdon, T. G.: Creep behavior of copper at intermediate temperatures I. Mechanical characteristics. Acta Metall.37, 843–852 (1989).

    Google Scholar 

  13. Krashchenko, V. P., Statsenko, V. E.: Effect of temperature and strain rate on basic processes controlling the strength of copper. Strength Mat.13, 487–492 (1981).

    Google Scholar 

  14. Nabarro, F. R. N.: Steady-state diffusional creep. Phil. Mag.16, 231–237 (1967).

    Google Scholar 

  15. Weertman, J.: Dislocation climb theory of steady-state creep. Trans, ASM., 681–694 (1968).

  16. Pueschl, W., Schoeck, G.: Calculation of cross-slip parameters in f.c.c. crystals. Mat. Sci. Eng.A 164, 286–289 (1993).

    Google Scholar 

  17. Conrad, H.: An investigation of the rate controlling mechanism for plastic flow of copper crystals at 90 K and 170 K. Acta Metall.6, 339–350 (1958).

    Google Scholar 

  18. Gindin, J. A., Nechrolod, N. K., Starodubor, Y. D.: Effect of staged low-temperature creep on the resistivity and mechanical properties of copper. Phys. Met. Metall.26, 107–114 (1968).

    Google Scholar 

  19. Guyot, P., Dorn, J. E.: A critical review of the Peierls mechanism. Can. J. Phys.45, 983–1017 (1967).

    Google Scholar 

  20. Herring, C.: Diffusional viscosity of a polycrystalline solid. Int. J. Non-Linear Mech.21, 437–445 (1950).

    Google Scholar 

  21. Coble, R. L.: A model for boundary diffusion controlled creep in polycristalline materials. J. Appl. Phys.34, 1679–1682 (1963).

    Google Scholar 

  22. Sherby, O. D., Miller, A. K.: Combining phenomenology and physics in describing the high temperature mechanical behavior of crystalline solids. J. Eng. Mat. Tech.101, 387–395 (1979).

    Google Scholar 

  23. Conrad, H.: The role of grain boundaries in creep and stress rupture. In: Mechanical behavior of materials (Dorn, J. E., ed.), pp. 218–269, 60–16667. New York: McGraw Hill 1961.

    Google Scholar 

  24. Exell, S. F., Warrington, D. H.: Subgrain boundary migration in aluminium. Phil. Mag.26, 1121 (1972).

    Google Scholar 

  25. Biberger, M., Blum, W.: Subgrain boundary migration during creep of LiF (I. Recombination of subgrain boundaries). Phil. Mag.A.66, 757–770 (1992).

    Google Scholar 

  26. Biberger, M., Blum, W.: Subgrain boundary migration during creep of LiF (II. Constant-Stress Experiments). Phil. Mag.A.66, 27–40 (1992).

    Google Scholar 

  27. Seeger, A., Schoeck, G.: Die Aufspaltung von Versetzungen in Metallen dichtester Kugelpackung. Acta Metall.1, 519–536 (1953).

    Google Scholar 

  28. Duesbery, M. S., Lonat, N. P., Sadananda, K.: The mechanics and energetics of cross-slip. Acta Metall.40, 149–158 (1992).

    Google Scholar 

  29. Weertman, J.: Steady-state creep through dislocation climb. Int. J. Non-Linear Mech.28, 362 (1957).

    Google Scholar 

  30. De Hosson, J. T., Boom, G., Schlagowski, U.: Solution hardening in Al−Zn alloys. Acta Metall.34, 1571–1583 (1986).

    Google Scholar 

  31. Mukherjee, A. K., Mote, J. D., Dorn, J. E.: Strain hardening of single aluminium crystals during polyslip. Trans. Met. Soc. AIME233, 1559–1565 (1965).

    Google Scholar 

  32. El-Magd, E., Shaker, C.: Determination of internal back stress under time-dependent creep-conditions. 4th Int Conf. on Creep and Fracture of Engineering Materials and Structures 1990.

  33. Ziaai-Moayyed, A. A.: Back stresses in monotonic and cyclic deformation: transient and steady-state-behavior. Dissertation, Stanford University 1981.

  34. Butt, M., Feltham, P.: Review — solid-solution hardening. J. Mat. Sci.28, 2557–2576 (1993).

    Google Scholar 

  35. Holt, D. L.: Dislocation cell formation in metals. Int. J. Non-Linear Mech.41, 3197–3201 (1970).

    Google Scholar 

  36. McQueen, H. J., Hockett, J. E.: Microstructures of aluminium compressed at various rates and temperatures. Metall Trans.1, 2997–3004 (1970).

    Google Scholar 

  37. Haasen, P.: Plastic deformation of nickel single crystals at low temperatures. Phil. Mag.3, 348–418 (1958).

    Google Scholar 

  38. Hirsch, P. B., Mitchell, T. E.: Dislocation structures in deformed single crystal and work-hardening theories. In: Work hardening (Hirth, J. P., Wertman, J., eds.). New York: Gordon and Breach 1968.

    Google Scholar 

  39. Friedel, J.: On the linear work hardening rate of f.c.c. single crystals. Phil. Mag.46, 1169–1186 (1955).

    Google Scholar 

  40. Friedel, J., Saada, G.: Introductory remarks on the nature of strain hardening in single crystals. In: Work hardening (Hirth, J. P., Weertman, J., eds.). New York: Gordon and Breach 1968.

    Google Scholar 

  41. Kuhlmann-Wilsdorf, D.: Unified theory of stages II and III of work-hardening in pure f.c.c. metal crystals. In: Work hardening (Hirth, J. P., Weertman, J., eds.). New York: Gordon and Breach 1968.

    Google Scholar 

  42. Hirsch, P. B.: Work hardening. In: The physics of metals S. Defects (Hirsch, P. B.,ed.), pp. 189–246. Cambridge: University Press 1975.

    Google Scholar 

  43. Seeger, A.: Recent progress in the understanding of work-hardening of f.c.c. single crystals. In: Work hardening (Hirth, J. P., Weertman, J., eds.). New York: Gorden and Breach 1968.

    Google Scholar 

  44. Basinski, Z.'S.: Thermally activated glide in face-centred cubic metals and its application to the theory of strain hardening. Phil. Mag.4, 393–432 (1959).

    Google Scholar 

  45. Mughrabi, H.: Description of the dislocation structures after unidirectional deformation at low temperature. In: Constitutive equations in plasticity (Argon, A. S., ed.), pp. 199–250. MIT-Press: Cambridge 1975.

    Google Scholar 

  46. Mitra, S. K., Osborne, P. W., Dorn, J. E.: On the intersection mechanism of plastic deformation in aluminium single crystals. Trans. Metall. Soc. AIME221, 1206–1214 (1961).

    Google Scholar 

  47. Hasegawa, T., Yakou, T., Karashima, S.: Deformation behaviour and dislocation structures upon stress reversal in polycrystalline aluminium. Mat. Sci. Eng.20, 267–276 (1975).

    Google Scholar 

  48. Mecking, H.: Strain hardening and dynamic recovery. In: Dislocation modelling of physical systems (Ashby, M. F., ed.), pp. 197–202. Proc. on the Int. Conf., Gainesville. Oxford: Pergamon Press 1981.

    Google Scholar 

  49. Mecking, H., Gottstein, G.: Recovery and recrystallization during deformation. In: Recrystallization of metallic materials (Haessner, F., ed.). Stuttgart: Dr. Rieder Verlag 1978.

    Google Scholar 

  50. Kuhlmann-Wilsdorf, D.: Theory of plastic deformation: properties of low energy dislocation structures. Mat. Sci. Eng.A 113, 1–39 (1989).

    Google Scholar 

  51. Seeger, A.: The mechanism of glide and work-hardening in f.c.c. and h.c.p. metals. In: Dislocation and mechanical properties of crystals (Fisher, J. C., Johnston, W. G., Thomson, R., eds.), pp. 243–329 General Electric 1957.

  52. Mecking, H., Kocks, U. F.: Kinetics of flow and strain-hardening. Acta Metall.10, 1865–1875 (1981).

    Google Scholar 

  53. Follansbee, P. S., Kocks, U. F.: A constitutive description of the deformation of copper based on the use of the mechanical treshold as an internal state variable. Acta Metall.36, 81–93 (1988).

    Google Scholar 

  54. Mecking, H., Luecke, K.: Analysis of stage III hardening of f.c.c. metals on the basis of themally activated cross slip. Second Intern. Conf. on the Strength of Metals and Alloys, pp. 470–474 (1970).

  55. Aernoudt, E., Gil-Sevillano, J., Van Houtte, P.: Structural background of yield and flow. In: Constitutive relations and their physical basis (Andersen, S. I, ed.), pp. 1–38. Denmark, Riso Natl. Lab. 1987.

    Google Scholar 

  56. Gil Sevillano, J.: The cold worked — state. In: Rekristallisation '92, pp. 19–27 (1992).

  57. Mecking, H., Estrin, Y.: Microstructure-related constitutive modelling of plastic deformation. In: Constitutive relations and their physical basis (Andersen, S. I, ed.), pp. 123–145 Denmark: Riso Natl. Lab. 1987.

    Google Scholar 

  58. Nix, W. D., Gibeling, J. C., Huges, D. A.: Time-dependent deformation of metals. Metall. Trans.A 16, 2215–2226 (1985).

    Google Scholar 

  59. Nix, W. D., Ilschner, B.: Mechanisms controlling creep of single phase metals and alloys. In: Strength of metals and alloys, ICSMA 5 (Haasen, P., Gerold, V., Kostorz, G., eds). Aachen: Pergamon Press 1979.

    Google Scholar 

  60. Mughrabi, H.: Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals. Acta Metall.31, 1367–1379 (1983).

    Google Scholar 

  61. Blum, W., Straub, S., Vogler, S.: Creep of pure materials and alloys. In: High temperatures materials and processes (Blum, W., Straub, S., Vogler, S., eds.), pp. 31–47. Erlangen: Inst. f. Werkstoffe 1993.

    Google Scholar 

  62. Schlums, H.: Ein stochastisches Werkstoffmodell zur Beschreibung von Kriechen und zyklischem Verhalten metallischer Werkstoffe. Braunschweig Series on Mechanics,5, Brauschweig: Mechanik-Zentrum 1992.

    Google Scholar 

  63. Miller, A. K.: An inelastic constitutive model for monotonic, cyclic and creep deformation: Part I: Equations development and analytical procedures. J. Eng. Mat. Tech.97, 106–113 (1976).

    Google Scholar 

  64. Chan, K. S., Lindholm, U. S., Bodner, S. R.: High temperature inelastic deformation under uniaxial loading: theory and experiment. J. Eng. Mat. Tech.111, (1989).

  65. Hasegawa, T., Ikeuchi, Y., Karashima, S.: Internal stress and dislocation structure during sigmoidal transient creep. Met. Sci. J.6, 78–82 (1972).

    Google Scholar 

  66. Heinrich, H., Neuhaus, R., Schwink, C.: Dislocation structure and densities in tensile deformed CuMn crystals oriented for single glide. Phys. Stat. Sol.A 131, 299–305 (1992).

    Google Scholar 

  67. Amodeo, R. J.: Dynamic simulation of dislocation pattern formation in metals during high temperature monotonic and cyclic deformation Dissertation, University of California 1988.

  68. Amodeo, R. J., Ghoniem, M. M.: Dislocation dynamics I. A proposed methology for deformation micromechanics. Phys. Rev.B 41, 6958–6976 (1990).

    Google Scholar 

  69. Hesselbarth, H.: Simulation von Versetzungsstrukturbildung, Rekristallisation und Kriechschädigung mit dem Prinzip der Zellulären Automaten. Braunschweig Series on Mechanics4, Braunschweig: Mechanik-Zentrum 1992.

    Google Scholar 

  70. Nordstrom, T. V., Barrett, C. R.: Recovery of high temperature deformed Ni−Al alloys. J. Mat. Sci. 1052–1060 (1972).

  71. Ahlquist, C. N., Gasca-Neri, R., Nix, W. D.: A phenomenological theory of steady state creep based on average internal and effective stresses. Acta Metall.18, 663–671 (1970).

    Google Scholar 

  72. Kocks, U. F., Mecking, H.: A mechanism for static and dynamic recovery. In: Strength of metals and alloys (Haasen, P., Gerold, V., Kostorz, G., eds.), pp. 345–350. Proc. of the 5th HICSMA-Conf., Aachen: Pergamon Press 1980.

    Google Scholar 

  73. Kassner, M. E., Miller, A. K., Sherby, O. D.: The separate roles of subgrains and forest dislocations in the isotropic hardening of type 304 stainless steel. Metall. Trans.A 13, 1977–1986 (1982).

    Google Scholar 

  74. Argon, A. S., Takeuchi, C.: Internal stresses in power-law creep. Acta Metall.29, 1877–1884 (1981).

    Google Scholar 

  75. Gottstein, G., Argon, A. S.: Dislocation theory of strain hardening and steady state deformation in creep and constant strain rate tests. In: Creep and fracture of engineering materials and structures (Wilshire, B., Owen, D. R. J., eds.), pp. 15–26. Swansea: Pineridge Press 1984.

    Google Scholar 

  76. Gottstein, G., Argon, A. S.: Dislocation theory of steady state deformation and its approach in creep and dynamic tests. Acta Metall.35, 1261–1271 (1987).

    Google Scholar 

  77. Prinz, F. B., Argon, A. S.: The evolution of plastic resistance in large strain plastic flow of single phase subgrain forming metals. Acta Metall.32, 1021–1030 (1984).

    Google Scholar 

  78. Mecking, H.: Description of hardening curves of f.c.c. single and polycrystals. In: Work hardening in tension and fatigue (Thompson, A. W. ed.), pp. 67–88. Ohio 1975.

  79. Prinz, F., Argon, A. S., Moffatt, W. C.: Recovery of dislocation structures in plastically deformed copper and nickel single crystals. Acta Metall.30, 821–830 (1982).

    Google Scholar 

  80. Kocks, U. F.: Law for work hardening and low-temperature creep. J. Eng. Mat. Tech. Trans of the ASME97, 76–85 (1976).

    Google Scholar 

  81. Cernocky, E. P., Krempl, E.: A non-linear uniaxial integral constitutive equation incorporating rate effects, creep and relaxation. Int. J. Non-Linear Mech.14, 183–203 (1979).

    Google Scholar 

  82. Chaboche, J. L.: Constitutive equations for cyclic plasticity. Int. J. Plast.5, 247–302 (1989).

    Google Scholar 

  83. Haupt, P., Korzen, M.: A new constitutive model of the phenomenological representation of rate-dependent and rate-independent material behavior. Proc. of Mecamat, The Inelastic Behavior of Solids, pp. 41–52 (1989).

  84. Szepan, F.: Ein elastisch-viskoplastisches Stoffgesetz zur Beschreibung großer Formänderungen unter Berücksichtigung der thermomechanischen Kopplung. Mitteilungen aus dem Institut für Mechanik70. Bochum 1989.

  85. Estrin, Y.: A unified constitutive model with one structure parameter. Proc. of Mecamat, Inelastic Behavior of Solids, pp. 537–546 (1989).

  86. Feltham, P.: A stochastic model of creep. Phys. Stat. Sol.30, 135–146 (1968).

    Google Scholar 

  87. Täubert, P.: Eine Kriechtheorie für Metalle unter Berücksichtigung von Verfestigung und Erholung. Deutsche Akademie der Wissenschaften, Klasse Mathematik, Physik, Technik.7, (1958).

  88. Steck, E. A.: A stochastic model for the high-temperature plasticity of metals. Int. J. Plast.5, 243–258 (1985).

    Google Scholar 

  89. Steck, E. A.: A stochastic model for the interaction of plasticity and creep in metals. Nucl. Eng. Design.114, 285–294 (1989).

    Google Scholar 

  90. Gerdes, R.: Ein stochastisches Werkstoffmodell für das inelastische Materialverhalten metallischer Werkstoffe im Hoch- und Tieftemperaturbereich. Braunschweiger Series on Mechanics20, Braunschweig: Mechanik-Zentrum 1995.

    Google Scholar 

  91. Gifkins, R. C.: Transitions in creep behavior. J. Mat. Sci.5, 156–165 (1970).

    Google Scholar 

  92. Siethoff, H.: Change in steady — state deformation mechanism of f.c.c. metals at intermediate temperatures. Z. Metallkunde77 (1986).

  93. Mecking, H.: Bestimmung der Werkstoffparameter für das Kriechen von Aluminium-Legierungen. Abschlußbericht zum DFG-Forschungsvorhaben Me 428/7 (1989).

  94. Steck, E. A., Gerdes, R., Lewerenz, M.: A stochastic constitutive model for high temperatures and its application to three-dimensional structures. In: Mathematical Modelling and Scientific Computing, special issue on Materials Modelling (to appear).

  95. Rie, K. T., Wittke, H.: Inelastisches Stoffgesetz und zyklisches Werkstoffverhalten im LCF-Bereich. In: Stoffgesetz für das inelastische Verhalten metallischer Werkstoffe. SFB 319. Braunschweig 1993.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Dr.-Ing. E. h. Dr. h. c. mult. E. Stein on the occasion of his 65th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steck, E.A., Gerdes, R. Consideration of processes on the microscale of metallic materials for the development of constitutive models. Acta Mechanica 120, 1–30 (1997). https://doi.org/10.1007/BF01174313

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01174313

Keywords

Navigation