Skip to main content
Log in

Flow equations of particle fluid mixtures

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

A set of flow equations are derived for the velocity components of the solid and liquid phases of a particle fluid mixture. The equations have a limited validity to the case of uniaxial flow accompanied by radial expansion.

The Terzaghi fluidization criterion is used to fix an internal parameter in the equations. Using a stability analysis it is demonstrated that the process of the onset of fluidization is accompanied by a smoothing out of internal heterogeneity in the system.

The applications treated are the permeability of a densely packed material and the settlement of a geotechnical filter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Happel, J., Brenner, H.: Low Reynolds number hydrodynamics, 2nd ed. Dordrecht: Martinus Nijhoff Publishers 1983.

    Google Scholar 

  2. Bird, R. B., Stewart, W. E., Lightfoot, E. N.: Transport phenomena. Wiley International 1960.

  3. Davidson, J. F., Clift, R., Harrison, D.: Fluidization, 2nd ed. New York: Academic Press 1985.

    Google Scholar 

  4. Batchelor, G. K.: Sedimentation in a dilute polydisperse system of interacting spheres. Part I. General theory. J. Fluid Mech.119, 379–408 (1982).

    Google Scholar 

  5. Tanaka, H., White, J. L.: A cell model theory of the shear viscosity of a concentrated suspension of interacting spheres in a non-Newtonian fluid. Non-Newtonian Fluid Mech.7, 333–343 (1980).

    Google Scholar 

  6. Terzaghi, K., Peck, R. B.: Soil mechanics in engineering practice, 2nd ed. Wiley International 1984.

  7. Koenders, M. A.: The incremental stiffness of an assembly of particles. Acta Mech.70, 31–49 (1987).

    Google Scholar 

  8. Lamb, H.: Hydrodynamics. Cambridge: University Press 1879.

    Google Scholar 

  9. Abramowitz, M., Stegun, I. A.: Handbook of mathematical functions. 9th ed. New York: Dover 1970.

    Google Scholar 

  10. Polubarinova-Kochina, P. Y. A.: Theory of groundwater movements. New Jersey: Princeton University Press 1962.

    Google Scholar 

  11. Report No. M 1881-16: “Open waterlopen analogie” (in Dutch). Delft Hydraulics Laboratory, PO Box 177, 2600 MH Delft, Holland (November 1984).

  12. Koenders, M. A.: Hydraulic criteria for filters. London: Estuary Physics Publ. (available from the author) 1985.

    Google Scholar 

  13. Elliot, S.: Private communication (1989).

  14. Thanikachalam, V., Sakhivadivel, R.: Grainsize criteria for protective filters, an enquiry. Soils and Foundations14, 13–24 (1974).

    Google Scholar 

  15. Den Adel, H.: Private communication (1990).

  16. Koenders, M. A., Williams, A. F.: A numerical model of the flow through an unstable geotechnical filter. In: Proc. 2nd European Specialty Conference on Numerical Methods in Geotechnical Engineering. Santander, Spain 1990. Santander: Cedex 1990.

  17. Bear, J.: Dynamics of fluids in porous media. New York: Elsevier 1972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koenders, M.A., Williams, A.F. Flow equations of particle fluid mixtures. Acta Mechanica 92, 91–116 (1992). https://doi.org/10.1007/BF01174169

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01174169

Keywords

Navigation