Skip to main content
Log in

Propagation of a crack due to shear waves in a medium of monoclinic type

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

In this paper the propagation of a crack due to shear waves in a medium having monoclinic symmetry is investigated. The stress intensity factor at the crack tip for concentrated force of a constant intensity and for constant loading is separately calculated. The Wiener-Hopf technique has been used to solve the problem. It has been shown that the stress intensity factor decreases as the length of the crack increases. The effect of anisotropy being distinctly marked.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achenbach, J. D.: Extension of a crack by a shear wave. Zeit. für angew. Math. Phys.21, 887–900 (1970).

    Google Scholar 

  2. Achenbach, J. D., Bazant, Z. P., Khetan, R. P.: Elastodynamic near-tip field for rapidly propagating interface crack. Int J. Engg. Sci.14, 797–809 (1976).

    Google Scholar 

  3. Mal, A. K.: Dynamic stress intensity factors for a non-axisymmetric loading of the pennyshaped crack. Int. J. Engg. Sci.6, 725–733 (1968).

    Google Scholar 

  4. Mal, A. K.: Interaction of elastic waves with a penny-shaped crack. Int. J. Engg. Sci.8 (5), 381–388 (1970).

    Google Scholar 

  5. Sih, G. C., Loeber, J. F.: Tortional vibration of an elastic solid containing a penny-shaped crack. J. Acoust. Soc. Amer.44 (5), 1237–1245 (1968).

    Google Scholar 

  6. Loeber, J. F., Sih, G. C.: Diffraction of antiplane shear waves by a finite crack. J. Acoust. Soc. Amer.44, 90–98 (1968).

    Google Scholar 

  7. Singh, B. M., Dhaliwal, R. S.: Diffraction of SH-waves by a moving crack. Acta Mechanica48, 71–79 (1983).

    Google Scholar 

  8. Tittman, B. R.: Scattering of elastic waves from simple defects in solids. Wave Motion5 (4), 299–306 (1983).

    Google Scholar 

  9. Tait, R. J., Moodie, T. B.: Complex variable methods and closed form solutions to dynamic crack and punch problems in the classical theory of elasticity. Int. J. Engg. Sc.19, 221–229 (1981).

    Google Scholar 

  10. Matczynski, M.: Quasi-static problem of a crack in an elastic strip subject to antiplane state of strain. Arch. Mech. Stosow25, 851–860 (1973).

    Google Scholar 

  11. Datta, S. K.: Scattering of elastic waves. In: Mechanics Today, Vol. 4, pp. 149–196, (Nemat-Nasser, S., ed.). New York: Pergamon Press 1978.

    Google Scholar 

  12. Chattopadhyay, A., Maugin, G. A.: Diffraction of magneto-elastic shear waves by a rigid strip. J. Acoust. Soc. Amer.78 (1), 217–222 (1985).

    Google Scholar 

  13. Ekstein, H.: High frequency vibrations of thin crystal plates. Physical Review68, 11–23 (1945).

    Google Scholar 

  14. Newman, E. G., Mindlin, R. D.: Vibrations of monoclinic crystal plate. J. Acoust. Soc. Amer.29, 1206–1218 (1957).

    Google Scholar 

  15. Kaul, R. K., Mindlin, R. D.: Frequency spectrum of a monoclinic crystal plate. J. Acoust. Soc. Amer.34, 1902–1910 (1962).

    Google Scholar 

  16. Chattopadhyay, A., Bandyopadhyay, U.: Shear waves in an infinite monoclinic crystal plate. Int. J. Engg. Sci.24, 1587–1596 (1986).

    Google Scholar 

  17. Chattopadhyay, A., Bandyopadhyay, U.: Diffraction of shear waves by a rigid strip in a medium of monoclinic type. Acta Mechanica65, 27–40 (1986).

    Google Scholar 

  18. Titchmark, E. C.: Theory of Fourier integrals. London: Oxford Univ. Press 1939.

    Google Scholar 

  19. Noble, B.: Methods based on the Wiener-Hopf technique for the solution of partial differential equations. London: Pergamon Press 1958.

    Google Scholar 

  20. Erdelyi, A., Oberhettinger, F., Magnus, W., Tricomi, F. G.: Tables of integral transforms, Vol. 1, New York: McGraw-Hill Book Comp. Inc. 1954.

    Google Scholar 

  21. Tiersten, H. F.: Linear piezoelectric plate vibrations. London: Plenum Press 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 5 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chattopadhyay, A., Bandyopadhyay, U. Propagation of a crack due to shear waves in a medium of monoclinic type. Acta Mechanica 71, 145–156 (1988). https://doi.org/10.1007/BF01173943

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01173943

Keywords

Navigation