Skip to main content
Log in

Solute distribution in crack tips under mixed mode I/II conditions

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Concentration solutions of crack problems under steady state conditions are expressed in terms of the Westergaard stress function. The problem of a central crack in an infinite plate subjected to a biaxial stress field at any angle of inclination with respect to the crack axis is considered in detail. The concentration distribution in the vicinity of the crack tip is obtained and is expressed in terms of the opening-mode and sliding-mode stress intensity factors. Constant terms, usually omitted, are incorporated into the concentration solution. The crack growth criterion based on the maximum concentration of diffusing species in front of the crack tip is reformulated by incorporating the constant terms of the concentration solution. It is shown that the omission of the constant terms may result in a significant error in the prediction of the critical quantities for crack growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Unger, D. J., Aifantis, E. C.: On the theory of stress assisted diffusion II. Acta Mechanica47, 117–151 (1983).

    Google Scholar 

  2. Aifantis, E. C.: Diffusion of a perfect fluid in a linear elastic stress field. Mech. Res. Comm.3, 245–250 (1976).

    Google Scholar 

  3. Aifantis, E. C.: On the problem of diffusion in solids. Acta Mechanica37, 265–276 (1980).

    Google Scholar 

  4. Gdoutos, E. E., Aifantis, E. C.: The method of caustics in environmental cracking. Engng. Fract. Mech.23, 423–430 (1986).

    Google Scholar 

  5. Gdoutos, E. E., Aifantis, E. C.: Environmental cracking under mixed-mode conditions. Engng. Fract. Mech.23, 431–439 (1986).

    Google Scholar 

  6. Eftis, J., Subramonian, N., Liebowitz, H.: Biaxial load effects on the crack border elastic strain energy and strain energy rate. Engng. Fract. Mech.9, 753–764 (1977).

    Google Scholar 

  7. Lee, J. D., Liebowitz, H.: The nonlinear and biaxial effects on energy release rate, J-integral and stress intensity factor. Engng. Fract. Mech.9, 765–779 (1977).

    Google Scholar 

  8. Liebowitz, H., Lee, J. D., Eftis, T.: Biaxial load effects in fracture mechanics. Engng. Fract. Mech.10, 315–335 (1978).

    Google Scholar 

  9. Etheridge, J. M., Dally, J. W.: A critical review of methods for determining stress-intensity factors from isochromatic fringes. Exp. Mech.17, 248–254 (1977).

    Google Scholar 

  10. Sanford, R. J., Dally, J. W.: A general method for determining mixed-mode stress intensity factors from isochromatic fringe patterns. Engng. Fract. Mech.11, 621–633 (1979).

    Google Scholar 

  11. Oriani, R. A.: Hydrogen in metals. In: Fundamentals of stress corrosion cracking, p. 32. Conference at Ohio State University, NACE, 1969.

  12. van Leeuwen, H. P.: The kinetics of hydrogen embrittlement, a quantitative diffusion model. Engng. Fract. Mech.6, 141–161 (1974).

    Google Scholar 

  13. Liu, H. W.: Stress-corrosion cracking and the interaction between crack-tip stress field and solute atoms. J. Basic Eng., ASME, 633–638 (1974).

    Google Scholar 

  14. van Leeuwen, H. P.: A quantitative model of hydrogen induced grain boundary cracking. J. Corros. NACE29, 197–204 (1973).

    Google Scholar 

  15. Li, J. C. M., Oriani, R. A., Darken, L. S.: The thermodynamics of stress solids. Z. Physik Chem.49, 271–290 (1966).

    Google Scholar 

  16. Oriani, R. A., Josephic, P. H.: Equilibrium and kinetic studies of the hydrogen-assisted cracking in steel. Acta Metall.25, 979–988 (1977).

    Google Scholar 

  17. van Leeuwen, H. P.: Plateau velocity of SCC in high strength steel — A quantitative treatment. Corrosion31, 42–50 (1975).

    Google Scholar 

  18. Gerberich, W. W., Chen, Y. T., St. John, C.: A short-time diffusion correlation for hydrogen-induced crack growth kinetics. Metallurg. Transact.6A, 1485–1498 (1975).

    Google Scholar 

  19. Gerberich, W. W., Chen, Y. T.: Hydrogen-controlled cracking — An approach to threshold stress intensity. Metallurg. Transact.6A, 271–278 (1975).

    Google Scholar 

  20. Johnson, H. H., Paris, P. C.: Sub-critical flaw growth. Engng. Fract. Mech.1, 3–45 (1968).

    Google Scholar 

  21. Johnson, H. H., Willner, A. M.: Moisture and stable crack growth in a high-strength steel. Appl. Mat. Res.4, 34–40 (1965).

    Google Scholar 

  22. Cherepanov, G. P.: On the theory of electrochemical stress corrosion cracking. Proc., Third Congress on Fracture, München 1973.

  23. Johnson, H. H.: Environmental cracking in high-strength materials. In: Fracture — an advanced treatise (Liebowitz, H., ed.), p. 679, Vol. 3 New York: Academic Press 1971.

    Google Scholar 

  24. Cherepanov, G. P., Ershov, L. V., Kuzmin, G. G.: On the growth of corrosion cracks. Corrosion29, 100–104 (1972).

    Google Scholar 

  25. Cherepanov, G. P.: On the theory of crack growth due to hydrogen embrittlement. Corrosion29, 305–309 (1973).

    Google Scholar 

  26. Aifantis, E. C., Gerberich, W. W.: Diffusion of gases in linear-elastic stress fields. In: Proceedings of an International Conference Published by the Metallurgical Society of AIME, pp. 350–354. Moran, Wyoming 1975.

    Google Scholar 

  27. Unger, D. J., Gerberich, W. W., Aifantis, E. C.: Further remarks on the implications of steady-state stress-assisted diffusion on environmental cracking. Scripta Metallurgica 1059–1064 (1982).

  28. Westergaard, H. M.: Bearing pressures and cracks. Trans. ASME61, A49-A53 (1939).

    Google Scholar 

  29. Paris, P. C., Sih, G. C.: Stress analysis of cracks In: Fracture toughness testing and its applications, ASTM STP 381, 30–85, (1965).

  30. Sih, G. C.: Strain-energy-density factor applied to mixed-mode crack problems. Int. J. Fract.10, 305–321 (1974).

    Google Scholar 

  31. Louthan, M. R., Jr., Sisson, R. D., Jr., McNitt, R. P., Smith, P. E.: Stress state and thickness effects on delayed failure. In: Hydrogen in metals (Bernstein, I. M., Thompson, A. N., eds.), pp. 829–839. TMS AIME, Warrendale PA, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gdoutos, E.E., Aifantis, E.C. Solute distribution in crack tips under mixed mode I/II conditions. Acta Mechanica 82, 1–9 (1990). https://doi.org/10.1007/BF01173735

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01173735

Keywords

Navigation