Skip to main content
Log in

Form of liquidus curves of binary systems

Communication 1. Systems of the eutectic type with nondissociating components

  • Published:
Bulletin of the Academy of Sciences of the USSR, Division of chemical science Aims and scope

Summary

  1. 1.

    The form of liquidus curves in binary systems of the eutectic type having nondissociating components was investigated by methods of mathematical analysis.

  2. 2.

    It was shown that in ideal systems for which ΔCP = 0 the form of the liquidus curves is determined completely by the entropy change in the passage of the component from the crystalline state to the solution.

  3. 3.

    For ΔCP ≠ 0, the form of the liquidus curves of ideal systems depends substantially on the value and sign of the ratio\(\frac{{\Delta C_p }}{{\Delta S_i }}\).

  4. 4.

    It was shown that linearity of the liquidus curve is not a criterion of nonideality of the system.

  5. 5.

    In real systems the form of the liquidus curve depends greatly on the type of departure from ideality and the character of the relation of activity coefficient to temperature and concentration.

  6. 6.

    When the departures of mixtures from Raoult's law are not too small, the form of liquidus curves at Ni = 1.0-0.8 is associated unequivocally with the type of departure from Raoult's law, so that for γi > 1 the liquidus curves are convex toward the composition axis and for γi < 1 they are convex in the direction away from the composition axis. The proportion of exceptions to this rule should not be more than about 5%

  7. 7.

    The conclusions concerning the form of liquidus curves of eutectic systems were extended to binary systems with layer separation in the liquid phase ( γi > 1) and with compound formation γi < 1).

  8. 8.

    All the theoretical conclusions were checked against experimental data and were found to be in good agreement with them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. H. W. Bakhius, Roozeboom, Die heterogenen Gleichgewichte vom Standpunkte der Phasenlehre, 2 Heft, 1 Teil, S. 276. Braunschweig, 1904.

  2. N. V. Lipin, Bull. Inst. Phys.-chem. Anal., 4, No. 1, 48 (1928).

    Google Scholar 

  3. W. Argersinger, Trans. Kansas Acad. Sci. 50, 216 (1947); Cited in C. A. 42, 442f (1948).

    Google Scholar 

  4. V. Mathot, Bul. Soc. chim. Belges 59, 137 (1950).

    Google Scholar 

  5. V. Ya. Anosov, Bull. Sector Phys.-chem. Anal 22, 67 (1963).

    Google Scholar 

  6. F. D. Rossini, D. D. Wagman, W. H. Evans, S. Levine and I. Jaffe, Selected Values of Chemical Thermodynamic Properties, Washington, 1952.

  7. A. Eucken and E. Schröder, Z. phys. Chem. B 41, 307 (1938).

    Google Scholar 

  8. E. V. Britske, A. F. Kapustinsky, B. K. Veselovsky, L. M. Shamovsky, L. G. Chentsova and V. I. Anvaer, Thermal Constants of Inorganic Substances, Izd. AN SSSR, Moscow, 1949.

    Google Scholar 

  9. J. J. Van Laar, Z. phys. Chem. 72, 723 (1910); 83, 599 (1913).

    Google Scholar 

  10. J. H. Hildebrand, Solubility of Nonelectrolytes, GONTI, Moscow, 1938.

    Google Scholar 

  11. J. Dauphin, Bull. 1954, 53.

  12. A. V. Nikolskaya and Ya. I. Gerasimov, J. Phys. Chem. 28, 713 (1954).

    Google Scholar 

  13. V. M. Kravchenko, J. Phys. Chem. 13, 139 (1939).

    Google Scholar 

  14. Landolt-Börnstein, Phys. Chem. Tabellen, 5 Aufl., I (1923).

  15. V. Ya. Anosov and S. A. Pogodin, Fundamental Principles of Physicochemical Analysis, Izd. AN SSSR, Moscow, 1947.

    Google Scholar 

  16. J. Chipman, Disc. Faraday Soc. 4, 23 (1948).

    Google Scholar 

  17. V. N. Eremenko, O. M. Eremenko and T. P. Bruevich, Ukrain. Chem. J., 17, 658 (1951).

    Google Scholar 

  18. M. Hansen, Structures of Binary Alloys, Metallurgy Press, Moscow, 1941.

    Google Scholar 

  19. W. E. Barlow, Z. anorg. allg. Chem. 70, 183 (1911).

    Google Scholar 

  20. A. F. Kapustinsky and S. I, Drakin, Bull. Acad. Sci. USSR, Div. Chem. Sci. 1947, 435.

  21. C. T. Heycock, and F. H. Neville, J. Chem. Soc. 61, 895 (1892).

    Google Scholar 

  22. O. J. Kleppa, J. Am. Chem. Soc. 74, 6047, 6051 (1952).

    Google Scholar 

  23. N. W. Taylor, J. Am. Chem. Soc. 45, 2865 (1923).

    Google Scholar 

  24. A. Stoffel, Z. anorg. allg. Chem. 53, 137 (1907).

    Google Scholar 

  25. W. J. Svirbely and S. M. Selis, J. Am. Chem. Soc. 75, 1532 (1953).

    Google Scholar 

  26. A. F. Kapustinsky and Yu. M. Kess.er, Bull. Acad. Sci. USSR, Div. Chem. Sci, 1956, 899.

  27. J. Fischer and R. C. Vogel, J. Am. Chem. Soc. 76, 4829 (1954).

    Google Scholar 

  28. V. P. Shishokin and M. I. Muskina, Bull. Acad. Sci., Chem. Series No, 4, 793 (1938).

    Google Scholar 

  29. V. P. Shishokin, Bull. Inst. Phys.-chem. Anal., 4, No. 1, 195 (1928).

    Google Scholar 

  30. R. F. Adamsky and C. M. Wheeler, J. Phys. Chem. 58, 225 (1954).

    Google Scholar 

  31. J. Fischer and R. C. Vogel, J. Am. Chem. Soc. 76, 4862 (1954).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kessler, Y.M. Form of liquidus curves of binary systems. Russ Chem Bull 6, 923–932 (1957). https://doi.org/10.1007/BF01173586

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01173586

Keywords

Navigation