Skip to main content
Log in

On unsteady magnetic low-speed slip flow in the boundary layer

Zur instationären magnetischen Gleitströmung geringer Geschwindigkeit in der Grenzschicht

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The influence of an uniform transverse magnetic field on the unsteady laminar boundary layer low-speed slip flow of a rarefied electrically conducting gas is considered. By means of the successive approximation method two problems are studied in detail. The first is an oscillating cylindrical body in a rarefied gas at rest. In the second problem the magnetic slip flow in the boundary layer around cylindrical bodies is studied for the case where the external speed of flow is exponentially dependent on time.

Zusammenfassung

Der Einfluß eines gleichförmigen transversalen Magnetfeldes auf die instationäre Gleitströmung geringer Geschwindigkeit in der laminaren Grenzschicht eines verdünnten, elektrisch leitenden Gases wird betrachtet. Zwei Probleme werden mit Hilfe der Methode der sukzessiven Approximationen genauer untersucht. Das erste ist das eines schwingenden zylindrischen Körpers in einem ruhenden Gas. Im zweiten Problem wird die Gleitströmung in der Grenzschicht um zylindrische Körper für den Fall einer exponentiell von der Zeit abhängigen äußeren Geschwindigkeit der Strömung betrachtet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

x :

distance along the surface from the leading edge

y :

distance normal to the surface

t :

time

u, v :

velocity components alongx andy respectively

∂:

density

V (x, t) :

velocity of external flow in a direction parallel to wall at the edge of the boundary layer

ν:

kinematic viscosity

σ:

the electrical conductivity

B (x, t) :

the magnetic induction

λ:

molecular mean free path

V :

free stream velocity

V 1(x):

potential flow velocity about the body in the steady state

N *, γ,N :

magnetic parameters

Λ:

molecular mean free path parameter

t s :

time of separation

R :

radius of circular cylinder

n :

circular frequency

i :

\(\sqrt { - 1} \)

a, b :

constants given by (41)

a 0, ...,a 7,E 0, ...,E 10,A 0, ...,A 13,p, q, C 1 *,C 1 **,C 2 :

constants given by (49–51) and (53–58)

E :

dimensionless slip velocity amplitude

δ:

slip velocity phase lag

References

  1. Becker, M., andD. E. Boylan: Experimental Flow Field Investigations Near the Sharp Leading Edge of a Cooled Flat Plate in a Hypervelocity Low-Density Flow, in: Rarefied Gas Dynamics, p. 993. Supplement 4, Vol. II. Academic Press. 1967.

  2. Chow, W. L., andB. T. Chao: Slip Flow Past a Semi-Infinite Flat Plate, in: Rarefied Gas Dynamics, pp. 441–450. Supplement 5, Vol. I. Academic Press. 1969.

  3. Chow, W. L., andR. E. Eilers: Hypersonic Low Density Flow Past Slender Wedges. AIAA Journal6, 177–179 (1968).

    Google Scholar 

  4. Chow, W. L.: Hypersonic Slip Flow Past the Leading Edge of a Flat Plate. AIAA Journal5, 1549–1557 (1967).

    Google Scholar 

  5. Chow, W. L.: Hypersonic Slip Flow Past the Leading Edge of a Flat Plate. AIAA Journal4, 2062–2063 (1966).

    Google Scholar 

  6. Shorenstein, M. L., andR. F. Probstein: The Hypersonic Leading Edge Problem. Paper No. 68-4, AIAA 6th Aerospace Sci. Meeting, New York, January 22–24, 1968.

  7. Laurmann, J. A.: Linearized Slip Flow Past a Semi-Infinite Flat Plate. Journal of Fluid Mechanics11, 82–96 (1961).

    Google Scholar 

  8. Mirels, H.: Estimate of Slip Effect on Compressible Laminar Boundary Skin Friction. NACA-TN 2609 (1952).

  9. Lin, T. C., andS. A. Schaaf: Effect of Slip on Flow Near a Stagnation Point and in a Boundary Layer. NACA-TN 2568 (1951).

  10. Kasza, K. E., andW. L. Chow: Low-Speed Slip Flow Over a Wedge. Journal of Applied Mechanics1970, 454–460.

  11. Schlichting, H.: Boundary-Layer Theory, 6th ed. McGraw-Hill. 1968.

  12. Watson, E. J.: Boundary Layer Growth. Proc. Roy. Soc.A 231, 104–116 (1955).

    Google Scholar 

  13. Djukic, Dj. S.: On the Non-Steady Magnetohydrodynamic Boundary Layers in Incompressible Fluids. Matematicki vesnik (Beograd)8, 293–301 (1971).

    Google Scholar 

  14. Schlichting, H.: Berechnung ebener periodischer Grenzschichtströmungen. Phys. Z.33, 327–335 (1932).

    Google Scholar 

  15. Andrade, E. N.: On the Circulation Caused by the Vibration of Air in a Tube. Proc. Roy. Soc.A 134, 447–470 (1931).

    Google Scholar 

  16. Maxwell, J. C.: On the Condition to be Satisfied by a Gas at the Surface of a Solid Body. The Sci. Pape. of James Clerk Maxwell, Vol. 2, p. 704. Cambridge Univ. Press. 1890.

  17. Kundt, A., andE. Warburg: On the Friction and Thermal Conductivity in Rarefied Gases. Phil. Mag.50, 53 (1875).

    Google Scholar 

  18. Eckert, E. R. G., andRobert M. Drake, Jr.: Analysis of Heat and Mass Transfer. McGraw-Hill. 1972.

  19. Rossow, V. J.: On Flow of Electrically Conducting Fluids over a Flat Plate in Presence of a Transverse Magnetic Field. NACA-TN 3971 (1957).

  20. Rahmatulin, H. A., A. Y. Sagomonyan, A. I. Bunomovich, andI. N. Zverev: Gas Dynamics. Izd. Visa Skola, Moscow, 1965 (in Russian).

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 3 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Djukic, D.S. On unsteady magnetic low-speed slip flow in the boundary layer. Acta Mechanica 18, 35–48 (1973). https://doi.org/10.1007/BF01173456

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01173456

Keywords

Navigation