Acta Mechanica

, Volume 126, Issue 1–4, pp 139–151 | Cite as

Shock propagation in gas dynamics: Explicit form of higher order compatibility conditions

  • M. P. Lazarev
  • R. Ravindran
  • P. Prasad
Original Papers

Summary

With the use of tensor analysis and the method of singular surfaces, an infinite system of equations can be derived to study the propagation of curved shocks of arbitrary strength in gas dynamics. The first three of these have been explicitly given here. This system is further reduced to one involving scalars only. The choice of dependent variables in the infinite system is quite important, it leads to coefficients free from singularities for all values of the shock strength.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Grinfel'd, M. A.: Ray method for calculating the wave front intensity in nonlinear elastic material. PMM J. Appl. Math. Mech.42, 958–977 (1978).Google Scholar
  2. [2]
    Thomas, T. Y.: Plastic flow and fracture in solids. New York-London: Academic Press 1961.Google Scholar
  3. [3]
    Grinfel'd, M. A.: The σ/σt derivative and its properties. VINITI Dep. N 1255-76 (1976) (in Russian).Google Scholar
  4. [4]
    Maslov, V. P.: Propagation of shock waves in the isentropic nonviscous gas. J. Sov. Math.13, 119–163 (1980).Google Scholar
  5. [5]
    Srinivasan, R., Prasad, P.: On the propagation of a multi-dimensional shock of arbitrary strength. Proc. Ind. Acad. Sci.94, 27–42 (1985).Google Scholar
  6. [6]
    Ravindran, R., Prasad, P.: On an infinite system of compatibility conditions along a shock ray. Q. J. Mech. Appl. Math.46, 131–140 (1993).Google Scholar
  7. [7]
    Prasad, P.: Kinematics of a multidimensional shock of arbitrary strength in an ideal gas. Acta Mech.45, 163–176 (1982).Google Scholar
  8. [8]
    Roy, R., Ravindran, R.: A note on the equivalence of shock manifold equations. Acta Mech.73, 239–244 (1988).Google Scholar
  9. [9]
    Anile, A. M., Russo, G.: Generalized wavefront expansion I: Higher order corrections for the propagation of weak shock waves. Wave Motion8, 243–258 (1986).Google Scholar
  10. [10]
    Anile, A. M., Russo, G.: Generalized wave front expansion II: The propagation of step shocks. Wave Motion10, 3–18 (1988).Google Scholar
  11. [11]
    Chandrasekhar, D.: Transonic flow of a real fluid and some problems using a new theory of shock dynamics. Ph. D. Thesis, Bangalore 1990.Google Scholar
  12. [12]
    Lazarev, M. P., Prasad, P., Singh, S. K.: An approximate solution of the piston problem. ZAMP46, 752–771 (1995).Google Scholar
  13. [13]
    Ravindran, R., Prasad, P.: A new theory of shock dynamics Part I: analytical considerations. Appl. Math. Lett.3, 77–81 (1990).Google Scholar
  14. [14]
    Prasad, P., Ravindran, R.: A new theory of shock dynamics Part II: numerical solution. Appl. Math. Lett.3, 107–109 (1990).Google Scholar
  15. [15]
    Truesdell, C. A., Toupin, R. A.: The classical field theories. Handbuch der Physik, VolIII/1, Berlin: Springer 1960.Google Scholar
  16. [16]
    Ericksen, J. L.: Tensor fields. In: Handbuch der Physik. VolIII/1, Berlin: Springer 1960.Google Scholar
  17. [17]
    Kevlahan, N. K.-R.: Structure and shocks in turbulence. Ph. D. Thesis, University of Cambridge 1994.Google Scholar
  18. [18]
    Courant, R., Friedrichs, K. O.: Supersonic flow and shock waves. New York: Interscience 1948.Google Scholar
  19. [19]
    Whitham, G. B.: Linear and nonlinear waves. New York: John Wiley 1974.Google Scholar
  20. [20]
    Landau, L. D.: On shock waves at large distances from the place of their origin. Sov. J. Phys.9, 496–500 (1945).Google Scholar
  21. [21]
    Germain, P., Guiraud, J. P.: Conditions de choc et structure des ondes de choc dans unècoulement non stationnaire de fluid dissipatif. J. Math. Pures Appl.45, 311–358 (1966).Google Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • M. P. Lazarev
    • 1
  • R. Ravindran
    • 2
  • P. Prasad
    • 2
  1. 1.Institute of the Physics of the EarthUSSR Academy of SciencesMoscowRussia
  2. 2.Department of MathematicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations