Skip to main content
Log in

Über die Lösung regulärer koerzitiver Rand- und Eigenwertaufgaben mit dem Galerkinverfahren

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

For regular coercive inhomogeneous and eigenvalue problems of the form b(u,γ) −zk(u,γ)=(f,γ), γεH, with bounded bilinearforms b, k in a Hilbertspace H the approximate solutions, eigenfunctions and eigenvalues calculated by means of the Galerkin method are shown to converge, with the eigenvalues preserving algebraic multiplicity. The above class of regular coercive problems are applicable to integral and differential equations and include for example the K-p.d. and non-K-p.d. operators of PETRYSHYN as special cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. AGMON, S.: Lectures on elliptic boundary value problems. Toronto New York London: D. Van Norstrand Company, Inc. 1965.

    Google Scholar 

  2. ANSELONE, P.M., T.W. PALMER: Spectral analysis of collectively compact, strongly convergent operator sequences. Pacific J. Math.25, 423–431 (1968).

    Google Scholar 

  3. ATKINSON, K.E.: The numerical solution of the eigenvalue problem for compact integral operators. Trans. Am. Math. Soc.129, 458–465 (1967).

    Google Scholar 

  4. COLLATZ, L.: Eigenwertprobleme und ihre numerische Behandlung. Leipzig: Akademische Verlagsgesellschaft Becker & Erler Kom.-Ges. 1945.

    Google Scholar 

  5. COLLATZ, L.: The numerical treatment of differential equations. Berlin Heidelberg New York: Springer-Verlag 1966.

    Google Scholar 

  6. FICHERA, G.: Linear elliptic differential systems and eigenvalue problems. Berlin Heidelberg New York: Springer-Verlag 1965.

    Google Scholar 

  7. FICHERA, G.: Il calcolo degli autovalori. Atti dell' VIII Congresso dell' Unione Matematica Italiana, Trieste 1967.

  8. GOULD, S.H.: Variational methods for eigenvalue problems. Toronto: University of Toronto Press 1957.

    Google Scholar 

  9. GRIGORIEFF, R.D.: Approximation von Eigenwertproblemen und Gleichungen zweiter Art in Hilbertschen Räumen. Erscheint in Math. Ann.

  10. GRIGORIEFF, R.D.: Über die Konvergenz des Galerkinverfahrens zur Lösung von Eigenwertaufgaben. Erscheint in ZAMM.

  11. HILDEBRANDT, S.: Über die Lösung nichtlinearer Eigenwertaufgaben mit dem Galerkinverfahren. Math. Z.101, 255–264 (1967).

    Google Scholar 

  12. HILDEBRANDT, S., E. WIENHOLTZ: Constructive proofs of representation theorems in separable Hilbert space. Comm. Pure Appl. Math.17, 369–373 (1964).

    Google Scholar 

  13. KANTOROWITSCH, L.W., G.P. AKILOW: Funktionalanalysis in normierten Räumen. Berlin: Akademie-Verlag 1964.

    Google Scholar 

  14. KANTOROWITSCH, L.W., W.I. KRYLOW: Näherungsmethoden der höheren Analysis. Berlin: Deutscher Verlag der Wissenschaften 1956.

    Google Scholar 

  15. MICHLIN, S.G.: Variationsmethoden der mathematischen Physik. Berlin: Akademie-Verlag 1962.

    Google Scholar 

  16. MIKHLIN, S.G., K.L. SMOLITSKIY: Approximate methods for solution of differential and integral equations. New York: American Elsevier Publishing Company Inc. 1967.

    Google Scholar 

  17. PETRYSHYN, W.V.: Direct and iterative methods for the solution of linear operator equations in Hilbert space. Trans. Amer. Math. Soc.105, 136–175 (1962).

    Google Scholar 

  18. PETRYSHYN, W.V.: On a class of K-p.d. and non-K-p.d. operators and operator equations. J. Math. Anal. Appl.10, 1–24 (1965).

    Google Scholar 

  19. PETRYSHYN, W.V.: Constructional proof of Lax-Milgram lemma and its application to non-K-p.d. abstract and differential operator equations. J. Siam Num. Anal.2, 404–420 (1965).

    Google Scholar 

  20. PETRYSHYN, W.V.: Projection methods in nonlinear numerical functional analysis. J. Math. Mech.17, 353–372 (1967).

    Google Scholar 

  21. PETRYSHYN, W.V.: On the eigenvalue problem Tu-λSu=0 with unbounded and nonsymmetric operators T and S. Philos. Trans. Roy. Soc. London262, 413–458 (1968).

    Google Scholar 

  22. STUMMEL, F.: Rand- und Eigenwertaufgaben in Sobolewschen Räumen. Berlin Heidelberg New York: Springer-Verlag 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grigorieff, R.D. Über die Lösung regulärer koerzitiver Rand- und Eigenwertaufgaben mit dem Galerkinverfahren. Manuscripta Math 1, 385–411 (1969). https://doi.org/10.1007/BF01172144

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01172144

Navigation