Skip to main content
Log in

Summary

  1. 1.

    Solid solutions of calcium aluminoferrites are formed with the participation not of the cubic form of ScaO· 3Al2O3. but ofthombic (a′) form (which is structurally closer to 2C&0- Fe2O2 and to 4CaO·AI2O2· Fe2O2) the other components being dicalcium ferrite and a certain amount of free calcium oxide.

  2. 2.

    The compositions of the aluminoferrite containing the maximum amount of aluminate in solid solutions corresponds to 17.5% by weight of ferric oxide. The formula of such an aluminoferrite can be written 8CaO· 3AI2O3· Fe2O3.

  3. 3.

    4CaO· Al2O3· Fe2O3 does not form solid solutions containing 3C&0- Al2O3.

  4. 4.

    Aluminoferrites present in mixtures containing calcium aluminates, calcium silicates, or excess free calcium oxide are of variable composition.

  5. 5.

    The aluminoferrites of industrial clinkers are of variable composition.

  6. 6.

    Calculation of the mineralogical composition of clinker must take into account the formation of an aluminoferrite of the composition indicated by the results of microscopic investigation. This procedure increases the accuracy with which the contents of other clinker minerals can be calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. H. S. Hansen, I. T. Brownmiller and R. H. Bogue, J. Am. Chem. Soc. 50 398 (1928).

    Google Scholar 

  2. T. M Lea and T. Parker, Phil. Truss. of Royal Soc, London, 731.V. 234. p. 1.

  3. A. Guttman and F. Gille, Zement, 13, p, 500, 1929.

    Google Scholar 

  4. N. A. Toropov. I. D. Merkov, and N. A, Shishakov, Cement. No. 1 1937, p. 28.

  5. H. F. McMurdie, J. of Research of the Natl. Our. of Stand., 18, 475 (1997).

    Google Scholar 

  6. T. Jamauchi, J. of the Japan Cer. Assoc. 45, 279 (1937); 46, 66 (1938).

    Google Scholar 

  7. E. Newman, J. of Research 38, 661 (1947).

    Google Scholar 

  8. M. Swayze, Am. J, Sci. 244, No. 1–2(1946), p. 1–30 p. 65–94.

  9. G. L. Malquori and V. Cirilli, Ricerca Sei., 11, 316 (1940); 14, 78 (1943).

    Google Scholar 

  10. V. Chilli and A. Burdese. Ricerca Sei., 21, 1185 (1951).

    Google Scholar 

  11. V. Cirilla and C. Brisi, Annali di chimica. 41. 61 (1951), No. 1.

    Google Scholar 

  12. D. S. Belyankin, B. V. Ivanov, and V. V. Lapin, Petrography of Technical Stone, 1952. p. 457.

  13. S. Solacolu, Zement. 1932; V 21, p, 301.

    Google Scholar 

  14. T. W. Parker, Third International Symposium on the Chemistry of Cement. London, 1952.

  15. N. L. Boweu and J. Schairet. Am. ). Sei., p. 161, 1935.

  16. W. Büssum, Fortschritte der Mineralogie, Kristallographie and Petrographie, 1937, V. 22, p. 31; Proceed ings of Symposium on Chemistry of Cements, Stockholm, 1937, p. 153.

    Google Scholar 

  17. G. L. Malquori and V. Cirilli, Third International Symposium on the Chemistry of Cement. London, 1952

  18. N. A. Toropov and L. D Merkov, Cement, 1939, No. 3, p. 43.

  19. Kazumi Mori and Vukio Matsushita. C. -A., 53, 12169 f. Tetsuto-Hagane. 38, 531–6, 1952.

    Google Scholar 

  20. N. A. Toropov and E. P. Skue, Proc. Acad. Sci., USSR, 1954, V. 88, No. 3. p. 415–418.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toropov, N.A., Boikova, A.I. Solid solutions of calcium aluminoferrites. Russ Chem Bull 4, 887–893 (1955). https://doi.org/10.1007/BF01172104

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01172104

Keywords

Navigation