Skip to main content
Log in

Age, origin and geodynamic significance of a polymetamorphic felsic intrusion in the Ötztal Crystalline Basement, Tirol, Austria

Alter, Genese und geologische Bedeutung einer polymetamorphen felsischen Intrusion im Ötztalkristallin, Tirol, Österreich

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

A multi-method approach was applied to derive the age and origin of an orthogneiss body located in the central Kaunertal, western Ötztal Crystalline Basement (ÖCB). The Tieftal orthogneiss body is an internally differentiated, polymetamorphosed epizonal intrusion, embedded in amphibolites. It comprises leucocratic hedenbergite-hornblende-, hornblende- and biotite-hornblende-gneisses, but also some melanocratic rock types. The leucocratic Tieftal gneisses are granitic, have a near eutectic melt composition and share some features of A-type granites, such as high Na2O+K2O(8.07 to 8.58wt%), Zr (379 to 554ppm) and Y (58 to 79ppm) contents. The REE-patterns are rather flat ((La/Yb)N=2.4 to 3.7), with distinct negative Eu anomalies. Single zircon evaporation dating of two samples and Sm-Nd dating of relict magmatic titanite resulted in ages of 487±7, 484±3 and 487±5Ma, respectively. The weighted mean of 485±3Ma is interpreted as the primary crystallization age of the Tieftal orthogneiss body. Rb-Sr whole rock dating results in a well defined regression line, corresponding to an age of 411±9Ma. This age clearly documents at least a partial resetting of the whole rock Rb-Sr system, which is most probably due to subsequent metamorphic overprint. The leucocratic Tieftal gneisses are isotopically rather primitive with an εNd 485 MaCHUR value of +1.7 and a calculated magmatic initial87Sr/86Sr ratio of 0.7047. These data suggest a major mantle contribution. Most probably, they originated through fractionation of the magmatic precursors of the accompanying tholeiitic metabasites. The more primitive isotopic composition of ÖCB metabasites and some late Archean/early Proterozoic and Cambrian inheritance in Tieftal gneiss zircons suggest some involvement of old crustal rocks, too. The amount of crustal contamination can be calculated to be in the range of 10 to 40%. The Tieftal gneisses and the accompanying metabasites are interpreted as remnants of igneous rocks related to an early Ordovician rifting and incipient formation of new oceanic crust, an event which can be traced throughout the central and western European Variscan and Alpine terranes.

Zusammenfassung

Ein Vielzahl von Methoden wurde angewandt, um das Alter und die Genese eines Orthogneiskörpers im mittleren Kaunertal, westliches Ötztalkristallin, abzuleiten. Der Tieftal-Orthogneiskörper ist eine in Amphiboliten eingeschaltete, intern differenzierte, polymetamorph überprägte, epizonale Intrusion. Er umfaßt sowohl leukokrate Hedenbergit-Hornblende-, Hornblende- und Biotit-Hornblende-Gneise als auch untergeordnet melanokrate Gesteine. Die leukokraten Tieftal-Gneise besitzen einen granitischen, beinahe einer eutektischen Schmelze entsprechenden Chemismus; einige Parameter wie hohe Na2O+K2O(8.07 bis 8.58Gew%), Zr(379 bis 554ppm) und Y(58 bis 79ppm) Gehalte weisen auf eine A-Typ Affinität hin. Die SEE-Spektren sind nur gering fraktioniert ((La/Yb)N=2.3 bis 3.7) und weisen eine markante negative Eu-Anomalie auf. Einzelzirkon-Evaporationsdatierungen an 2 Proben und eine Sm-Nd Datierung von reliktischem magmatischem Titanit ergeben Alter von 487±7, 484±3 und 487±5Ma. Der gewichtete Mittelwert von 485±3Ma wird als das primäre magmatische Kristallisationsalter des Tieftal-Orthogneiskörpers interpretiert. Eine Rb-Sr Gesamtgesteinsdatierung ergibt eine gut definierte Regressionsgerade mit einem Alter von 411±9Ma. Dieses Alter beweist eine postmagmatische Störung des Rb-Sr Gesamtgesteinssystems, die durch die metamorphen überprägungen verursacht wurde. Die leukokraten Tieftal-Gneise besitzen eine relative primitive isotopische Zusammensetzung mit einem εNd 485 MaCHUR a Wert von +1.7 und einem zurückgerechneten magmatischen87Sr/86Sr Initialverhältnis von 0.7047. Diese Daten machen eine große Beteiligung von Mantelmaterial wahrscheinlich. Am ehesten entstanden die leukokraten Tieftal-Gneise durch magmatische Fraktionierungsprozesse aus den Ausgangsgesteinen der begleitenden tholeiitischen Metabasite. Die noch primitivere isotopische Zusammensetzung der Metabasite im Ötztalkristallin und spätarchaische/frühproterozoische sowie kambrische Komponenten in den Zirkonen der leukokraten Tieftal-Gneise weisen aber auch auf die Beteiligung alten krustalen Materials hin. Der Anteil der krustalen Komponente liegt im Bereich von 10 bis 40%. Der Tieftal-Orthogneiskörper und die begleitenden Metabasite werden als Relikte magmatischer Gesteine, die während eines frühordovizischen Riftings und der beginnenden Bildung neuer ozeanischer Kruste entstanden sind, gedeutet. Zeugen dieses Vorganges sind in allen variszisch und alpidisch geprägten Gebieten Westund Mitteleuropas zu finden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bence AE, Albee AL (1968) Empirical correction factors of the electron microanalysis of silicates and oxides. J Geol 76: 382–403

    Google Scholar 

  • Bernhard F (1994) Zur magmatischen und metamorphen Entwicklung im westlichen Ötztal-Stubai Kristallin (Bereich Feichten-Verpeil, mittleres Kaunertal). Thesis, University of Graz (unpublished)

  • Bernhard F, Hoinkes G, Kaindl R (1994) Geochemische Charakterisierung von Metabasiten im westlichen Ötztal-Stubai-Kristallin (Kaunertal). Mitt Öst Min Ges 139: 275–277

    Google Scholar 

  • Borsi S, Del Moro A, Sassi FP, Zirpoli G (1980) New petrographic and radiometric data on the Ötztal and Stubai orthogneisses (Eastern Alps). N Jb Min Mh 2: 75–87

    Google Scholar 

  • Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In:Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 63–114

    Google Scholar 

  • Cherniak DJ (1995) Sr and Nd diffusion in titanite. Chem Geol 125: 219–232

    Google Scholar 

  • Chowanetz E (1990) Argumente für ein altpaläozoisches Alter des Winnebach-Migmatites. Öst Beitr Meteor Geoph 3: 243–257

    Google Scholar 

  • De la Roche H, Leterrier J, Grandclaude P, Marchal M (1980) A classification of volcanic and plutonic rocks using R1R2-diagram and major-element analyses—its relationship with current nomenclature. Chem Geol 29: 183–210

    Google Scholar 

  • Ebadi A, Johannes W (1991) Beginning of melting and composition of first melt in the system Qz-Ab-Or-H2O-CO2. Contrib Mineral Petrol 106:286–295

    Google Scholar 

  • Eby GN (1990) The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 26: 115–134

    Google Scholar 

  • Green TH, Pearson NJ (1986) Rare-earth element partitioning between sphene and coexisting silicate liquid at high pressure and temperature. Chem Geol 55: 105–119

    Google Scholar 

  • Gromet LP, Silver LT (1983) Rare earth element distribution among minerals in a granodiorite and their petrogenetic implications. Geochim Cosmochim Acta 47: 925–939

    Google Scholar 

  • Hammer W (1923) Erläuterungen zur geologischen Spezialkarte der Republik Österreich 1: 75000, Blatt Nauders

  • Hammer W (1924) Erläuterungen zur geologischen Spezialkarte der Republik Österreich 1: 75000, Blatt Landeck

  • Hammer W (1925) Cordieritführende metamorphe Granite aus den Ötztaler Alpen. TMPM 38: 67–87

    Google Scholar 

  • Hoinkes G (1978) Zur Mineralchemie und Metamorphose toniger und mergeliger Zwischenlagen in Marmoren des südwestlichen Schneebergerzuges (Ötztaler Alpen, Südtirol). N Jb Min Abh 131: 272–303

    Google Scholar 

  • Hoinkes G, Kostner A, Thöni M (1991) Petrologic constraints for eoalpine eclogite facies metamorphism in the Austroalpine Ötztal Basement. Mineral Petrol 43: 237–254

    Google Scholar 

  • Hoinkes G, Thöni M, Bernhard F, Kaindl R, Lichem Ch, Schweigl J, Tropper P (1996) Prealpine magmatic and metamorphic evolution of the Austroalpine Ötztal Basement in the Kaunertal area (in preparation)

  • Holtz F, Pichavant M, Barbey P, Johannes W (1992) Effects of H2O on liquidus phase relations in the haplogranite system at 2 and 5kbar. Am Mineral 77: 1223–1224

    Google Scholar 

  • Jacobsen SB, Wasserburg GJ (1980) Sm-Nd isotope evolution of chondrites. Earth Planet Sci Lett 50: 139–155

    Google Scholar 

  • Kerr A, Fryer BJ (1993) Nd isotope evidence for crust-mantle interaction in the generation of A-type granitoid suites in Labrador, Canada. Chem Geol 104: 39–60

    Google Scholar 

  • Klötzli US (1995) Geochronologische Untersuchungen an Metagranitoiden im ostalpinen Alkristallin W und S des Tauernfensters. In: Geologie von Osttirol, Schwerpunkt Blatt 179 Lienz. Arbeitstagung 1995, Geologische Bundesanstalt, Wien, pp 95–97

    Google Scholar 

  • Klötzli US (1996) Zircon evaporation and conventional U-Pb analytical techniques at the geochronological laboratory, University of Vienna. Mitt Öst Geol Ges (submitted)

  • Klötzli-Chowanetz E, Klötzli US, Koller F (1995) Prevariscan evolution of the Ötztal crystalline basement based on Pb-Pb-age determination. Ber Deutsch Min Ges Beih Eur J Mineral 7: 132

    Google Scholar 

  • Kober B (1986) Whole-grain evaporation for207Pb/206Pb-age-investigations on single zircons using a double-filament thermal ion source. Contrib Mineral Petrol 93: 482–490

    Google Scholar 

  • Kober B (1987) Single-zircon evaporation combined with Pb+ emitter bedding for207Pb/206Pb-age investigations using thermal ion mass spectrometry, and implications to zirconology. Contrib Mineral Petrol 96: 63–71

    Google Scholar 

  • Langmuir CH, Vocke RD, Hanson GN, Hart SR (1978) A general mixing equation with applications to Icelandic basalts. Earth Planet Sci Lett 37: 380–392

    Google Scholar 

  • Lichem Ch (1993) Petrologische and geochemische Untersuchungen an Orthogneisen des westlichen Ötztal-Stubai Kristallms (Kaunertal). Thesis, University of Graz (unpublished)

  • Lindh A, Schöberg H, Annertz K (1994) Disturbed radiometric ages and their bearing on interregional correlations in the SW Baltic Shield. Lithos 31: 65–79

    Google Scholar 

  • Ludwig KR (1992) Isoplot: a plotting and regression program for radiogenic-isotope data, version 2.57. USGS, Open-file report 91-445

  • McCulloch MT, Kyser TK, Woodhead JD, Kinsley L (1994) Pb-Sr-Nd-O isotopic constraints on the origin of rhyolites from the Taupo Volcanic Zone of New Zealand: evidence for assimilation followed by fractionation from basalt. Contrib Mineral Petrol 115: 303–312

    Google Scholar 

  • Michard A, Gurriet P, Soudant M, Albarede F (1985) Nd isotopes in French Phanerozoic shales: external vs. internal aspects of crustal evolution. Geochim Cosmochim Acta 49: 601–610

    Google Scholar 

  • Miller Ch, Thöni M (1995) Origin of eclogites from the Austroalpine Ötztal basement (Tirol, Austria): geochemistry and Sm-Nd vs. Rb-Sr isotope systematics. Chem Geol 122: 199–225

    Google Scholar 

  • Musselwhite DS, DePaolo DJ, McCurry M (1989) The evolution of a silicic magma system: isotope and chemical evidence from the Woods Mountains Volcanic Center; eastern California. Contrib Mineral Petrol 101: 19–29

    Google Scholar 

  • Müller B, Klötzli US, Flisch M (1995) U-Pb-Zircon dating of the Older Orthogneiss suite in the Silvretta nappe, eastern Alps: cadomian magmatism in the Upper Austro-Alpine realm. Geol Rundsch 84: 457–465

    Google Scholar 

  • Ochsner A (1993) U-Pb geochronology of the upper Proterozoic-lower Paleozoic geodynamic evolution in the Ossa-Morene Zone (SW Iberia): constraints on the timing of the Cadomian orogeny. Thesis, ETH Zürich (unpublished)

  • Peccerillo A, Poli G, Sassi FP, Zirpoli G, Mezzacasa G (1979) New data on the Ordovician acid plutonism in the Eastern Alps. N Jb Min Abh 137:162–183

    Google Scholar 

  • Pedersen RB, Malpas J (1984) The origin of oceanic plagiogranites from the Karmoy ophiolite, western Norway. Contrib Mineral Petrol 88: 36–52

    Google Scholar 

  • Pin Ch, Marini F (1993) Early Ordovician continental break-up in Variscan Europe: Nd-Sr isotope and trace element evidence from bimodal igneous associations of the Southern Massif Central, France. Lithos 29: 177–196

    Google Scholar 

  • Pupin JP (1980) Zircon and granite petrology. Contrib Mineral Petrol 73: 207–220

    Google Scholar 

  • Schmidt K, Jäger E, Grünenfelder M, Grögler N (1967) Rb-Sr- und U-Pb-Altersbestimmungen am Proben des Ötztalkristallins und des Schneeberger Zuges. Eclog Geol Helv 60: 529–536

    Google Scholar 

  • Schweigl J (1995) Neue geochronologische und isotopengeologische Daten zur voralpidischen Entwicklungsgeschichte im Ötztalkristallin (Ostalpen). Jb Geol BA 138: 131–149

    Google Scholar 

  • Smalley PC, Field D, Raheim A (1983) Resetting of Rb-Sr whole rock isochrons during Sveconorwegian low-grade events in the Gjerstad augen gneiss, Telemark, southern Norway. Isotope Geosci 1: 269–282

    Google Scholar 

  • Söllner F, Hansen BT (1987) “Panafrikanisches” und “kaledonisches” Ereignis im ÖtztalKristallin der Ostalpen: Rb-Sr und U-Pb Altersbestimmungen an Migmatiten und Metamorphiten. Jb Geol BA 130: 529–569

    Google Scholar 

  • Sultan M, Batiza R, Sturchio NC (1986) The origin of small-scale geochemical and mineralogic variations in a granite intrusion. Contrib Mineral Petrol 93: 513–523

    Google Scholar 

  • Thöni M (1981) Degree and evolution of the Alpine metamorphism in the Austroalpine unit W of the Hohe Tauern in the light of K/Ar and Rb/Sr age determinations on micas. Jb Geol BA 124:111–174

    Google Scholar 

  • Thöni M (1986) The Rb-Sr thin slab isochron method—an unreliable geochronological method for dating geologic events in polymetamorphic terrains? Mem Sci Geol 36: 211–238

    Google Scholar 

  • Tommasini S, Poli GE, Manetti P, Conticelli S (1994) Oligo-Miocene A-type granites and granophyres from Yemen: Isotopic and trace-element constraints bearing on their genesis. Eur J Mineral 6: 571–590

    Google Scholar 

  • Turner SP, Foden JD, Morrison RS (1992) Derivation of some A-type magmas by fractionation of basaltic magma: an example from the Padthway Ridge, South Australia. Lithos 28: 151–179

    Google Scholar 

  • Von Raumer JF, Neubauer F (1994) The Palaeozoic evolution of the Alps. SMPM 74: 459–467

    Google Scholar 

  • Whalen RB, Currie KL, Chappel BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol 95: 407–419

    Google Scholar 

  • Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20: 325–343

    Google Scholar 

  • York D (1969) Least square fitting of a straight line with correlated errors. Earth Planet Sci Lett 5: 320–324

    Google Scholar 

  • Zheng Y-F (1989) Influences of the nature of the initial Rb-Sr system on isochron validity. Geochim Cosmochim Acta 80:1–16

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 13 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernhard, F., Klötzli, U.S., Thöni, M. et al. Age, origin and geodynamic significance of a polymetamorphic felsic intrusion in the Ötztal Crystalline Basement, Tirol, Austria. Mineralogy and Petrology 58, 171–196 (1996). https://doi.org/10.1007/BF01172095

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01172095

Keywords

Navigation