Skip to main content
Log in

The transient response of bonded piezoelectric and elastic half space with multiple interfacial collinear cracks

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

This paper investigates the dynamic behavior of a bonded piezoelectric and elastic half space containing multiple interfacial collinear cracks subjected to transient electro-mechanical loads. Both the permeable and impermeable boundary conditions are examined and discussed. Based on the use of integral transform techniques, the problem is reduced to a set of singular integral equations, which can be solved using Chebyshev polynomial expansions. Numerical results are provided to show the effect of the geometry of interacting collinear cracks, the applied electric fields, and the electric boundary conditions along the crack faces on the resulting dynamic stress intensity and electric displacement intensity factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shindo, Y., Ozawa, E.: Dynamic analysis of a cracked piezoelectric material. In: Mechanical modeling of new electromagnetic materials (Hsieh, R. K. T., ed.), pp. 297–304. Amsterdam: Elsevier 1990.

    Google Scholar 

  2. Norris, A. N.: Dynamic Green's functions in anisotropic piezoelectric, thermoelastic and poroelastic solids. Proc. R. Soc. LondonA447, 175–186 (1994).

    Google Scholar 

  3. Khutoryyansky, N. M., Sosa, H.: Dynamic representation formulas and fundamental solutions for piezoelectricity. Int. J. Solids Struct.32, 3307–3325 (1995).

    Google Scholar 

  4. Li, S., Mataga, P. A.: Dynamic crack propagation in piezoelectric materials. Part 1: Electrode solution. J. Mech. Phys. Solids44, 1799–1830 (1996).

    Google Scholar 

  5. Li, S., Mataga, P. A.: Dynamic crack propagation in piezoelectric materials. Part 2: Vacuum solution. J. Mech. Phys. Solids44, 1831–1866 (1996).

    Google Scholar 

  6. Narita, F., Shindo, Y.: Scattering of antiplane shear waves by a finite crack in piezoelectric laminates. Acta Mech.134, 27–43 (1999).

    Google Scholar 

  7. Chen, Z. T., Karihaloo, B. L.: Dynamic response of a cracked piezoelectric ceramic under arbitrary electro-mechanical impact. Int. J. Solids Struct.36, 5125–5133 (1999).

    Google Scholar 

  8. Meguid, S. A., Chen, Z. T.: Transient response of a finite piezoelectric strip containing coplanar insulating cracks under electro-mechanical impact. Mech. Mater.33, 85–96 (2001).

    Google Scholar 

  9. Wang, X., Yu, S.: Transient response of a crack in a piezoelectric strip subjected to the mechanical and electrical impacts. Int. J. Solids Struct.37, 5795–5808 (2000).

    Google Scholar 

  10. Shin, J. W., Kwon, S. M., Lee, K. Y.: An eccentric crack in a piezoelectric strip under anti-plane shear impact loading. Int. J. Solids Struct.38, 1483–1494 (2001).

    Google Scholar 

  11. Meguid, S. A., Wang, X. D.: Dynamic anti-plane behavior of interacting cracks in a piezoelectric material. Int. J. Fract.91, 391–403 (1998).

    Google Scholar 

  12. Wang, X. D., Meguid, S. A.: Modelling and analysis of the dynamic behaviour of piezoelectric materials containing interacting cracks. Mech. Mat.32, 723–737 (2000).

    Google Scholar 

  13. Li, X. F., Fan, T. Y., Wu, X. F.: A moving anti-plane crack at the interface between two dissimilar piezoelectric materials. Int. J. Engng Sci.38, 1219–1234 (2000).

    Google Scholar 

  14. Wang, B. L., Han, J. C., Du, S. Y.: Electroelastic fracture dynamics for multi-layered piezoelectric materials under dynamic anti-plane shearing. Int. J. Solids Struct.37, 5219–5231 (2000).

    Google Scholar 

  15. Wang, X. D.: On the dynamic behavior of interacting interfacial cracks in piezoelectric media. Int. J. Solids Struct.38, 815–831 (2001).

    Google Scholar 

  16. Narayanan, G. V., Beskos, D. E.: Numerical operational methods for time-dependent linear problems. Int. J. Num. Meth. Engng18, 1829–1854 (1982).

    Google Scholar 

  17. Durbin, F.: Numerical inversion of Laplace transforms: an efficient improvement to Duber and Abate's method. Computer J.17, 371–376 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X., Meguid, S.A. & Liew, K.M. The transient response of bonded piezoelectric and elastic half space with multiple interfacial collinear cracks. Acta Mechanica 159, 11–27 (2002). https://doi.org/10.1007/BF01171444

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01171444

Keywords

Navigation