Skip to main content
Log in

Mass identification from lambdamatrices in structural dynamics

  • Contribted Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The discretization of vibration problems in structural dynamics by means of fundamental solutions results in a nonlinear representation by so-called lambdamatrices.

Here the dynamic stiffness matrix with transcendental elements is replaced by a linear eigenvalue formulation with static stiffness and a mass matrix. The mass results from interpolating the lambdamatrix either in a Taylor-like or in a Lagrange-like manner.

For the present the essential steps of this procedure are demonstrated for vibrations of beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Providakis, C. P., Beskos, D. E.: Free and forced vibrations of plates by boundary and interior elements. Int. J. Num. Meth. Eng.28, 1977–1994 (1989).

    Google Scholar 

  2. Kitahara, M.: Boundary integral equation methods in eigenvalue problems of elastodynamics and thin plates. Amsterdam: Elsevier 1985.

    Google Scholar 

  3. Beskos, D. E.: Boundary element methods in dynamic analysis. Appl. Mech. Rev.40, 1–23 (1987).

    Google Scholar 

  4. Banerjee, P. K., Ahmad, S., Wang, H. C.: A new BEM formulation for the acoustic eigenfrequency analysis. Int. J. Num. Meth. Eng.26, 1299–1309 (1988).

    Google Scholar 

  5. Wilson, R. B., Miller, N. M., Banerjee, P. K.: Free-vibration analysis of three-dimensional solids by BEM. Int. J. Num. Meth. Eng.29, 1737–1757 (1990).

    Google Scholar 

  6. Brebbia, C. A., Nowak, A. J.: Treatment of domain integrals by using dual and multiple reciprocity methods. In: Discretization methods in structural mechanics (Kuhn, G., Mang, H. eds.) pp. 13–28. IUTAM/IACM SymposiumVienna1989. Berlin-Heidelberg: Springer 1990.

    Google Scholar 

  7. Katsikadelis, J. T., Kandilas, C. B.: A flexibility matrix solution of the vibration problem of plates based on the boundary element method. Acta Mech.83, 51–60 (1990).

    Google Scholar 

  8. Lancaster, P.: Lambda-matrices and vibrating systems. Oxford-London-New York: Pergamon Press 1966.

    Google Scholar 

  9. Leung, A. Y. T.: Multilevel dynamic substructures. Int. J. Num. Meth. Eng.28, 181–191 (1989).

    Google Scholar 

  10. Kolousek, V.: Dynamics in engineering structures. London: Butterworths 1973.

    Google Scholar 

  11. Sotiropoulos, G. H.: Approximate determination of the dynamic stiffness coefficients of beams. Ing.-Arch.47, 319–327 (1978).

    Google Scholar 

  12. Ruge, P.: Optimierung finiter Elemente durch geeignete Ansatz-Generatoren. Ing.-Arch.48, 259–277 (1979).

    Google Scholar 

  13. Spyrakos, C., Chen, C. I.: Power series expansions of dynamic stiffness matrices for tapered bars and shafts. Int. J. Num. Meth. Eng.30, 259–270 (1990).

    Google Scholar 

  14. Clough, R. W., Penzien, J.: Dynamics of structures, pp. 345–363. New York-San Francisco: McGraw-Hill 1975.

    Google Scholar 

  15. De Figueiredo, T. G. B., Brebbia, C. A.: A new variational boundary element model for potential problems. Eng. Anal. with Bound. Elem.8, 45–50 (1991).

    Google Scholar 

  16. Latz, K.,: Power series expansions of frequency dependent boundary formulation (in preparation).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruge, P. Mass identification from lambdamatrices in structural dynamics. Acta Mechanica 95, 157–166 (1992). https://doi.org/10.1007/BF01170810

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01170810

Keywords

Navigation