Acta Mechanica

, Volume 154, Issue 1–4, pp 11–30 | Cite as

On stability domains of nonconservative systems under small parametric excitation

  • A. A. Mailybaev
Original Papers


A linear multi-parameter nonconservative system under small periodic parametric excitation is considered. Approximations of the stability domain in the parameter space are derived in the cases, when the corresponding autonomous system has a zero eigenvalue or a pair of complex conjugate imaginary eigenvalues. Formulae of the approximations use information on the unperturbed autonomous system and derivatives of system matrices with respect to parameters. Singularities arising on the stability boundary are analyzed. As a numerical application, stability of a pipe conveying pulsating fluid is studied.


Dynamical System Fluid Dynamics Parameter Space System Matrice Complex Conjugate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Weyh, B., Kostyra, H.: Direct Floquet method for stability limits determination—I. Theory. Mech. Mach. Theory26, 123–131 (1991).Google Scholar
  2. [2]
    Sinha, S. C., Wu, D.-H.: An efficient computational scheme for the analysis of periodic systems. J. Sound Vibration151, 91–117 (1991).Google Scholar
  3. [3]
    Bolotin, V. V.: The dynamic stability of elastic systems. San Francisco: Holden-Day 1964.Google Scholar
  4. [4]
    Turhan, Ö.: A generalized Bolotin's method for stability limit determination of parametrically excited systems. J. Sound Vibration216, 851–863 (1998).Google Scholar
  5. [5]
    Fu, F. C. L., Nemat-Nasser, S.: Stability of solution of systems of linear differential equations with harmonic coefficients. AIAA Journal10, 30–36 (1972).Google Scholar
  6. [6]
    Fu, F. C. L., Nemat-Nasser, S.: Response and stability of linear dynamic systems with many degrees of freedom subjected to nonconservative and harmonic forces. J. Appl. Mech.42, 458–463 (1975).Google Scholar
  7. [7]
    Ariaratnam, S. T., Namachchivaya, N. S.: Dynamic stability of pipes conveying pulsating fluid. J. Sound Vibration107, 215–230 (1986).Google Scholar
  8. [8]
    Wu, W.-T., Griffin, J. H., Wickert, J. A.: Perturbation method for the Floquet eigenvalues and stability boundary or periodic linear systems. J. Sound Vibration182, 245–257 (1995).Google Scholar
  9. [9]
    Bogoliubov, N. Mitropolsky, Y. A.: Asymptotic methods in the theory of nonlinear oscillations. New York: Gordon and Breach 1961.Google Scholar
  10. [10]
    Cesari, L.: Asymptotic behaviour and stability problems in ordinary differential equations, 2nd ed. New York: Academic Press 1964.Google Scholar
  11. [11]
    Nayfeh, A. H., Mook, D. T.: Nonlinear oscillation. New York: Wiley 1979.Google Scholar
  12. [12]
    Yakubovitch, V. A., Starzhinskii, V. M.: Linear differential equations with periodic coefficients, vol. 1. New York: Wiley 1975.Google Scholar
  13. [13]
    Vishik, M. I., Lyusternik, L. A.: The solution of some perturbation problems for matrices and selfadjoint or non-selfadjoint differential equations. Russian Math. Surv.15, 1–74 (1960).Google Scholar
  14. [14]
    Seyranian, A. P.: Sensitivity analysis of multiple eigenvalues. Mech. Struct. Mach.21, 261–284 (1993).Google Scholar
  15. [15]
    Arnold, V. I.: Geometrical methods in the theory of ordinary differential equations. New York Berlin: Springer 1983.Google Scholar
  16. [16]
    Galin, D. M.: On real matrices depending on parameters. Uspekhi Matematicheskikh Nauk27, 241–242 (1972), in Russian.Google Scholar
  17. [17]
    Mailybaev, A. A.: Transformation of families of matrices to normal forms and its application to stability theory. SIAM J. Matrix Anal. Appl.21, 396–417 (2000).Google Scholar
  18. [18]
    Seyranian, A. P., Solem, F., Pedersen, P.: Stability analysis for multi-parameter linear periodic systems. Archive Appl. Mech.69, 160–180 (1999).Google Scholar
  19. [19]
    Seyranian, A. P., Solem, F., Pedersen, P.: Multi-parameter linear periodic systems: sensitivity analysis and applications. J. Sound Vibration229, 89–111 (2000).Google Scholar
  20. [20]
    Mailybaev, A. A., Seyranian, A. P.: On singularities of a boundary of the stability domain. SIAM J. Matrix Anal. Appl.21, 106–128 (2000).Google Scholar
  21. [21]
    Mailybaev, A. A., Seyranian, A. P.: On the boundaries of the parametric resonance domain. J. Appl. Maths Mechs64, 909–923 (2000).Google Scholar
  22. [22]
    Troger, H., Zeman, K.: Zur korrekten Modellbildung in der Dynamik diskreter Systeme. Ingenieur Archiv51, 31–43 (1981).Google Scholar
  23. [23]
    Scheidl, R., Troger, H., Zeman, K.: Application of bifurcation and decrement diagrams of matrices to the modelling of mechanical systems. In: Proc. 4th Symposium of Trends in Applications of Pure Mathematics to Mechanics (Brilla, J., ed.), pp. 249–266. Boston London Melbourne, Pitman 1984.Google Scholar
  24. [24]
    Yakubovitch, V. A., Starzhinskii, V. M.: Parametric resonance in linear systems. Moscow: Nauka 1987, in Russian.Google Scholar
  25. [25]
    Paidoussis, M. P., Issid, N. T.: Dynamic stability of pipes conveying fluid. J. Sound Vibration33, 267–294 (1974).Google Scholar
  26. [26]
    Paidoussis, M. P., Sundararajan, C.: Parametric and combination resonances of a pipe conveying pulsating fluid. J. Appl. Mech.42, 780–784 (1975).Google Scholar
  27. [27]
    Korn, G. A., Korn, T. M.: Mathematical handbook for scientists and engineers. New York: McGraw-Hill 1968.Google Scholar

Copyright information

© Springer-Verlag 2002

Authors and Affiliations

  • A. A. Mailybaev
    • 1
  1. 1.Institute of MechanicsMoscow State UniversityMoscowRussia

Personalised recommendations