Skip to main content
Log in

Wavelet transforms of some equations of fluid mechanics

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

This paper explores the application of wavelet transforms to equations rather than to data sets. An entire class of wavelets, obtained from recursive shifts and changes in scale of Gaussian filters, transforms Laplacians into first order derivatives in the scale factor. As a result, parabolic and elliptic equations are transformed into first-order wave equations or into ordinary differential equations. Examples are given for the diffusion, Burgers, Poisson and Navier-Stokes equations, which are formally integrated by the method of characteristics. It is also shown that the even-indexed Gaussian wavelets decompose a function into the local spectral contributions to its amplitude as well as to its variance. This gives a simpler inversion formula and a new form of the convolution of wavelet transforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basdevant, C., Holschneider, M., Perrier, V.: La méthode des ondelettes mobiles. C. R. Acad. Sci. Paris310/I, 647–652 (1990).

    Google Scholar 

  2. Bertoglio, J. P., Jeandel, D.: A simplified spectral closure for homogeneous turbulence. Turbulent Shear Flows5, 19–13 (1987).

    Google Scholar 

  3. Courant, R., Hilbert, D.: Methods of mathematical physics. New York: Wiley 1989.

    Google Scholar 

  4. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math.41, 909–996 (1988).

    Google Scholar 

  5. Deardorff, J. W.: The use of subgrid transport equations in a three-dimensional model of atmospheric turbulence. J. Fluid Eng.95, 429–438 (1973).

    Google Scholar 

  6. Farge, M.: Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech.24, 395–457 (1992).

    Google Scholar 

  7. Farge, M., Rabreau, G.: Transformée en ondelettes pour détecter et analyser les structures cohérentes dans les écoulements turbulents bidimensionnels. C. R. Acad. Sci. Paris307/II, 1479–1486 (1988).

    Google Scholar 

  8. Gradshteyn, I. S., Ryzhik, I. M.: Tables of integrals, series and products. New York: Academic Press 1965.

    Google Scholar 

  9. Heil, C., Walnut, D. F.: Continuous and discrete wavelet transforms. STAM Rev.31, 628–666 (1989).

    Google Scholar 

  10. Holschneider, M.: On the wavelet transforms of fractal objects. J. Stat. Phys.50, 963–993 (1988).

    Google Scholar 

  11. Kronland-Martinet, R., Morlet, J., Grossmann, A.: Analysis of sound patterns, through wavelet transforms. Int. J. Pattern Recog. Art. Intel.1, 273–302 (1987).

    Google Scholar 

  12. Leonard, A.: Energy cascade in large-eddy simulations of turbulent fluid flows. Adv. Geophys.18A, 237–248 (1974).

    Google Scholar 

  13. Lesieur, M.: Turbulence in fluids. Dordrecht: Martinus Nijhoff 1987.

    Google Scholar 

  14. Lewalle, J.: Modeling the effect of initial and freestream conditions on circular wakes. In: Studies in turbulence (Gatski, T. B., Sarkar, S., Speziale, C. G., eds.). Berlin Heidelberg New York Tokyo: Springer 1991.

    Google Scholar 

  15. Lumley, J. L.: Computational modeling of turbulent flows. Adv. Appl. Mech.18, 123–176 (1978).

    Google Scholar 

  16. Lumley, J. L.: The O.N.R. Lecture. APS/DFD Annual Meeting, unpublished.

  17. Maday, Y., Perrier, V., Ravel, J. C.: Adaptivité dynamique sur bases d' ondelettes pour l'approximation d'équations aux dérivées partielles. Notes aux C. R. Acad. Sci. Paris 1991.

  18. McComb, W. D.: The physics of fluid turbulence. Oxford: Oxford University Press 1990.

    Google Scholar 

  19. Meneveau, C.: Analysis of turbulence in the orthonormal wavelet representation. J. Fluid Mech. (in press).

  20. Murenzi, R.: Ondelettes multidimensionnelles et applications a l'analyse d'images. Thèse, Université Catholique de Louvain 1990.

  21. Orszag, S.: Numerical methods for the simulation of turbulence. Phys. Fluids [Suppl.]2, 250–257 (1979).

    Google Scholar 

  22. Speziale, C. G.: Analytical methods for the development of Reynolds stress closures in turbulence. Annu. Rev. Fluid. Mech.23, 107–157 (1991).

    Google Scholar 

  23. Tennekes, H., Lumley, J. L.: A first course in turbulence. Cambridge: M. I. T. Press 1972.

    Google Scholar 

  24. Wang, Q., Brasseur, J. G., Smith, R. W., Smits, A. J.: Application of multidimensional wavelet transforms to the analysis of turbulence data. In: Proc. Wavelets and Turbulence Workshop, Princeton University 1991.

  25. Whitham, G. B.: Linear and non-linear waves. New York: Wiley 1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewalle, J. Wavelet transforms of some equations of fluid mechanics. Acta Mechanica 104, 1–25 (1994). https://doi.org/10.1007/BF01170275

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01170275

Keywords

Navigation