Skip to main content
Log in

The temperature drops in glassy polymers while strained

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Constitutive equations are derived for nonisothermal loading of glassy polymers at finite strains. The model is based on the theory of temporary networks in a version of the concept of adaptive links. The specific mechanical energy of a temporary network is determined with account for the potential energies of deformation for individual links and the energy of interaction between them. Stress-strain relations and a differential equation for the evolution of temperature are obtained using the laws of thermodynamics. As examples, we study uniaxial extension of a bar and simple shear of a layer. Explicit formulas are derived for the temperature drops prior to necking of specimens. Good agreement is demonstrated between experimental data for polycarbonate at room temperature and predictions of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, T.-M., Harrison, I. R.: Thermal effects in the necking of polymers. Polym. Eng. Sci.27, 1399–1402 (1987).

    Google Scholar 

  2. Zhou, Z., Chudnovsky, A., Bosnyak, C. P., Sehanobish, K.: Cold-drawing (necking) behavior of polycarbonate as a double glass transition. Polym. Eng. Sci.35, 304–309 (1995).

    Google Scholar 

  3. Matsuoka, S., Bair, H. E.: The temperature drop in glassy polymers during deformation. J. Appl. Phys.48, 4058–4062 (1977).

    Google Scholar 

  4. Struik, L. C. E.: Physical ageing in amorphous polymers and other materials. Amsterdam: Elsevier 1978.

    Google Scholar 

  5. Tant, M. R., Wilkes, G. L.: An overview of the nonequilibrium behavior of polymer glasses. Polym. Eng. Sci.21, 874–895 (1981).

    Google Scholar 

  6. Santore, M. M., Duran, R. S., McKenna, G. B.: Volume recovery in epoxy glasses subjected to torsional deformations: the question of rejuvenation. Polymer32, 2377–2381 (1991).

    Google Scholar 

  7. Struik, L. C. E.: On the rejuvenation of physically aged polymers by mechanical deformation. Polymer38, 4053–4057 (1997).

    Google Scholar 

  8. McKenna, G. B.: Dilatometric evidence for the apparent decoupling of glassy structure from the mechanical stress field. J. Non-Cryst. Solids172-174, 756–764 (1994).

    Google Scholar 

  9. McKenna, G. B., Leterrier, Y., Schultheisz, C. R.: The evolution of material properties during physical aging. Polym. Eng. Sci.35, 403–410 (1995).

    Google Scholar 

  10. Colucci, D. M., O'Connell, P. A., McKenna, G. B.: Stress relaxation experiments in polycarbonate: a comparison of volume changes for two commercial grades. Polym. Eng. Sci.37, 1469–1474 (1997).

    Google Scholar 

  11. Green, M. S., Tobolsky, A. V.: A new approach to the theory of relaxing polymeric media. J. Chem. Phys.14, 80–92 (1946).

    Google Scholar 

  12. Yamamoto, M.: The visco-elastic properties of network structure. 1. General formalism. J. Phys. Soc. Japan11, 413–421 (1956).

    Google Scholar 

  13. Lodge, A. S.: Constitutive equations from molecular network theories for polymer solutions. Rheol. Acta7, 379–392 (1968).

    Google Scholar 

  14. Tanaka, F., Edwards, S. F.: Viscoelastic properties of physically cross-linked networks. Transient network theory. Macromolecules25, 1516–1523 (1992).

    Google Scholar 

  15. Drozdov, A. D.: On constitutive laws for ageing viscoelastic materials at finite strains. Eur. J. Mech. A/Solids12, 305–324 (1993).

    Google Scholar 

  16. Drozdov, A. D.: A model of adaptive links for aging viscoelastic media. J. Rheol.,40, 741–759 (1996).

    Google Scholar 

  17. Drozdov, A. D.: A constitutive model for nonlinear viscoelastic media. Int. J. Solids Structures34, 2685–2707 (1997).

    Google Scholar 

  18. Drozdov, A. D.: A model of adaptive links in nonlinear viscoelasticity. J. Rheol.41, 1223–1245 (1997).

    Google Scholar 

  19. Drozdov, A. D.: A model for the nonlinear viscoelastic response in polymers at finite strains. Int. J. Solids Structures35, 2315–2347 (1998).

    Google Scholar 

  20. Drozdov, A. D.: Mechanics of viscoelastic solids. Chichester: Wiley 1998.

    Google Scholar 

  21. Treloar, L. R. G.: The physics of rubber elasticity. Oxford: Clarendon 1975.

    Google Scholar 

  22. Petruccione, F., Biller, P.: A numerical stochastic approach to network theories of polymeric fluids. J. Chem. Phys.89, 577–582 (1988).

    Google Scholar 

  23. Petruccione, F., Biller, P.: Rheological properties of network models with configuration-dependent creation and loss rates. Rheol. Acta27, 557–560 (1988).

    Google Scholar 

  24. Drozdov, A. D.: Finite elasticity and viscoelasticity. Singapore: World Scientific 1996.

    Google Scholar 

  25. Coleman, B. D., Gurtin, M. E.: Thermodynamics with internal state variables. J. Chem. Phys.47, 597–613 (1967).

    Google Scholar 

  26. Lu, H., Zhang, X., Knauss, W. G.: Uniaxial, shear, and Poisson relaxation and their conversion to bulk relaxation: studies on poly(methyl methacrylate). Polym. Eng. Sci.37, 1053–1064 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drozdov, A.D. The temperature drops in glassy polymers while strained. Acta Mechanica 139, 171–199 (2000). https://doi.org/10.1007/BF01170189

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01170189

Keywords

Navigation