Skip to main content
Log in

A variational principle motivated by the optimal rod theory

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

In this work we show that a number of well known nonlinear second order ODE appearing in theoretical physics provide the necessary condition for the minimum of the functional\(I = \int\limits_a^b {L(x,\mathop x\limits^{..} ,t) dt} \) with the Lagrangian\(L = ( - \lambda F(t)\frac{x}{{\mathop x\limits^{..} }})^\alpha \). Also we prove that those second-order differential equations may be viewied as conservation laws for the corresponding Euler-Lagrange equations that are the fourth-order ODE. Several special cases that have importance in physics, mechanics and optimal rod theory are studied in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leibniz, G. W.: Die Vernunftprinzipien der Natur (1714). In: Hauptschriften zur Grundlegung der Philosophie, übersetzt von A. Buchenau, Band II, pp. 428–432. Leipzig: Verlag von Felix Meiner 1904/1906.

    Google Scholar 

  2. Vujanovic, B. D., Jones, S. E.: Variational methods in nonconservative phenomena. Boston: Academic Press 1989.

    Google Scholar 

  3. Anthony, K.-H.: A new approach to thermodynamics of irreversible processes by means of Lagrange-formalism. In: Disequilibrium and self-organisation (Kilmister, C. W., ed.), pp. 75–92. D. Reidel Publishing Company 1986.

  4. Cox, S. J.: The shape of the ideal column. Mathematical Intelligencer14, 16–24 (1992).

    Google Scholar 

  5. Barnes, D. C.: Extremal problems for eigenvalues with applications to buckling, vibration and sloshing. SIAM J. Math. Anal.16, 342–357 (1985).

    Google Scholar 

  6. Cox, S. J., Overton, M. L.: On the optimal design of columns against buckling. SIAM J. Math. Anal.23, 287–325 (1992).

    Google Scholar 

  7. Blasius, H.: Träger kleinster Durchbiegung und Stäbe größter Knickfestigkeit bei gegebenem Materialverbrauch. Zeitschr. Math. Physik62, 182–197 (1914).

    Google Scholar 

  8. Ratzersdorfer, J.: Die Knickfestigkeit von Stäben und Stabwerken. Wien: Springer 1936.

    Google Scholar 

  9. Keller, J. B.: The shape of the strongest column. Arch. Rational Mech. Anal5, 275–285 (1960).

    Google Scholar 

  10. Bratus, A. S., Zharov, I. A.: On optimal construction of elastic rods. Soviet Appl. Mech.26, 80–86 (1990).

    Google Scholar 

  11. Sage, A. P., White, C. C.: Optimum system control, 2nd ed. New Jersey: Prentice-Hall 1977.

    Google Scholar 

  12. Atanackovic, T. M.: Stability theory of elastic rods. Singapore: World Scientific 1997.

    Google Scholar 

  13. Atanackovic, T. M., Simic, S. S.: Optimal shape of Pflüger rod. European J. Mech. (in press).

  14. Atanackovic, T. M.: A Note on the Thomas-Fermi equation. ZAMM63, 642–643 (1983).

    Google Scholar 

  15. Sen, A. K., Trinh, S.: An exact solution for the rate of heat transfer from a rectangular fin governed by a power law-type temperature dependence. ASME J. Heat Transfer108, 457–459 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atanackovic, T.M., Vujanovic, B.D. & Baclic, B.S. A variational principle motivated by the optimal rod theory. Acta Mechanica 139, 57–71 (2000). https://doi.org/10.1007/BF01170182

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01170182

Keywords

Navigation