Skip to main content
Log in

Strongly correlated electronic ground states in metals near the metal-insulator transition

  • Section D / Treatment of Many-Electron Systems
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The model in which positive ions in a metal are smeared into a uniform neutralizing background in which interacting electrons move is first considered at some length, especially rather near to the metal-insulator (Wiper) transition. Properties considered carefully are (a) the electronic momentum distribution as a function of background density, and (b) the pair correlation function. Features connected with both the long-range Coulombic repulsion and the transition from delocalized to localized behaviour will be highlighted in terms of (a) and (b) above. The possible use of this model as a reference state against which to consider the alkali metals, in both normal and expanded form, will then be discussed. In Na, the importance of 3s–3p hybridization will be emphasized, the Heisenberg model providing a surprisingly useful account of some bulk properties. Diffraction evidence on the degenerate electron assembly in molten Na and K will be considered in support of pronounced metallic bonding. Expanded Cs along the coexistence curve will next be treated, especially the observed magnetic susceptibility which changes from Fermi liquid behaviour to Curie-Weiss form as the critical point is approached. The crossover point is discussed in terms of heavy fermion theory and is shown to contain information about the discontinuity of the electronic momentum distribution at the Fermi surface. This discontinuity is much smaller than that in jellium (the smeared ion model above) and testifies to the importance of the electron-ion interaction at this density, which cannot be treated perturbatively. Finally, the possibility of the co-existence of molecules in metallic phases is considered, with particular reference to metallic hydrogen and metallic iodine near the metal-insulator transition. For the latter, experimental evidence can leave little doubt that there is at least a limited range of pressures over which the metallic ground state of iodine contains I2 molecules, and some discussion of this strongly correlated state will be included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.A. Coulson and I. Fischer, Phil. Mag. 40 (1949)386.

    Google Scholar 

  2. M.C. Gutzwiller, Phys. Rev. A137 (1965)1726.

    Google Scholar 

  3. E.P. Wigner, Phys. Rev. 46 (1934)1002; Trans. Faraday Soc. 34(1938)678.

    Google Scholar 

  4. K.S. Singwi and M.P. Tosi, in: Solid State Physics, Vol. 36, ed. H. Ehrenreich, F. Seitz and D. Turnbull (Academic Press, New York, 1981), p. 177.

    Google Scholar 

  5. D.M. Ceperley and B.J. Alder, Phys. Rev. Lett. 45 (1980)566.

    Google Scholar 

  6. F. Herman and N.H. March, Sol. Stat. Commun. 50 (1984)725.

    Google Scholar 

  7. N.H. March, Phys. Rev. 110 (1958)604.

    Google Scholar 

  8. N.H. March, M. Suzuki and M. Parrinello, Phys. Rev. B19 (1979)2027.

    Google Scholar 

  9. E.P. Wigner and F. Seitz, Phys. Rev. 43 (1933)804.

    Google Scholar 

  10. T. Gaskell, W. Jones and N.H. March, Phys. Lett. 23 (1966)673.

    Google Scholar 

  11. A. Holas and N.H. March, Phys. Chem. Liquids 17 (1987)215.

    Google Scholar 

  12. N.H. March, Phys. Lett. A108 (1985)368.

    Google Scholar 

  13. N.H. March and M.P. Tosi,Coulomb Liquids (Academic Press, New York, 1986).

    Google Scholar 

  14. K.A. Dawson and N.H. March, Phys. Chem. Liquids 14 (1984)131.

    Google Scholar 

  15. A. Schinner, Phys. Chem. Liquids 18 (1988)117.

    Google Scholar 

  16. A.B. Bhatia and N.H. March, Phys. Chem. Liquids 13 (1984)313.

    Google Scholar 

  17. J.C. Kimball, J. Phys. A8 (1975)1513.

    Google Scholar 

  18. N.H. March, J. Phys. A8 (1975)L133.

    Google Scholar 

  19. E. Daniel and S.H. Vosko, Phys. Rev. 120 (1960)2041.

    Google Scholar 

  20. N.H. March and W.H. Young, Phil. Mag. 4 (1959)384.

    Google Scholar 

  21. J.P. Malrieu, D. Maynau and J.P. Daudey, Phys. Rev. B30 (1984)1817.

    Google Scholar 

  22. P.A. Egelstaff, N.H. March and N.C. McGill, Can. J. Phys. 52 (1974)1651.

    Google Scholar 

  23. P.J. Dobson, J. Phys. C11 (1978)L295.

    Google Scholar 

  24. M.W. Johnson, private communication and to be published (1990).

  25. R.D. Poshusta and D.J. Klein, Phys. Rev. Lett. 48 (1982)1555.

    Google Scholar 

  26. J. Chihara, J. Phys. F17 (1987)295.

    Google Scholar 

  27. S. Tamaki, Can. J. Phys. 65 (1987)286.

    Google Scholar 

  28. N.H. March and M.P. Tosi, Phys. Chem. Liquids 10 (1980)113.

    Google Scholar 

  29. R.G. Chapman and N.H. March, Phys. Rev. B38 (1988)792.

    Google Scholar 

  30. W. Freyland, Phys. Rev. B20 (1979)5104.

    Google Scholar 

  31. W.W. Warren, Phys. Rev. 829 (1984)7012.

    Google Scholar 

  32. T.M. Rice, K. Ueda, H.R. Ott and H. Rudigier, Phys. Rev. B31 (1985)594.

    Google Scholar 

  33. L. Pauling, Proc. Nat. Acad. Sci. 39 (1953)551.

    Google Scholar 

  34. R. Winter and T. Bodensteiner, High Pressure Res. 1 (1988)23.

    Google Scholar 

  35. R. Winter and F. Hensel, Phys. Chem. Liquids (1989), in press.

  36. W.W. Warren and L.F. Mattheiss, Phys. Rev. B30 (1984)3103.

    Google Scholar 

  37. M.J. Gillan, B. Larsen, M.P. Tosi and N.H. March, J. Phys. C9 (1976)889.

    Google Scholar 

  38. A. Ferraz, F. Flores and N.H. March, J. Phys. Chem. Sol. 45 (1984)627.

    Google Scholar 

  39. P.S. Hawke, T.J. Burgess, D.E. Duerre, J.G. Huebel, R.N. Keeler, H. Klapper and W.C. Wallace, Phys. Rev. Lett. 41 (1978)994.

    Google Scholar 

  40. M. Ross, Rep. Prog. Phys. 48 (1985)1.

    Google Scholar 

  41. I.F. Silvera, private communication and to be published.

  42. H.K. Mao, A.P. Jephcoat, R.J. Hemley, L.W. Finger, C.S. Zha, R.M. Hazen and D.E. Cox, Science 239 (1988)1131.

    Google Scholar 

  43. J. Van Straaten and I.F. Silvera, Phys. Rev. 837 (1988)1989; Phys. Rev. B, in press.

    Google Scholar 

  44. D.M. Ceperley and B.J. Alder, Phys. Rev. 836 (1987)2092.

    Google Scholar 

  45. H.G. Drickamer, Sol. Stat. Phys. 17 (1965)1; H.G. Drickamer, R.W. Lynch, R.L. Clendenen and E.A. Perez-Albueme, Sol. Stat. Phys. 19(1966)135.

    Google Scholar 

  46. See, for example, the review by F. Siringo, R. Pucci and N.H. March, High Pressure Res., to appear.

  47. F. Siringo, R. Pucci and N.H. March, Phys. Rev. 837 (1988)2491.

    Google Scholar 

  48. K. Takemura, Y. Fujii, S. Minomura and O. Shimomura, Sol. Stat. Commun. 30 (1979)137; for later refs., see [46].

    Google Scholar 

  49. R. Bersohn, J. Chem. Phys. 36 (1962)3445.

    Google Scholar 

  50. F. Siringo, R. Pucci and N.H. March, Phys. Rev. 838 (1988)9567.

    Google Scholar 

  51. R. Pucci, F. Siringo and N.H. March, Phys. Rev. 838 (1988)9517.

    Google Scholar 

  52. R.E. Peierls,Quantum Theory of Solids (Oxford University Press, 1955).

  53. W.P. Su, J.R. Schrieffer and A.J. Heeger, Phys. Rev. Lett. 42 (1979)1698.

    Google Scholar 

  54. J. Hubbard, Proc. Roy. Soc. A276 (1963)238.

    Google Scholar 

  55. P. Horsch, Phys. Rev. 824 (1981)7351.

    Google Scholar 

  56. S. Kivelson and D.E. Heim, Phys. Rev. 826 (1982)4278.

    Google Scholar 

  57. J.E. Hirsch and M. Grabowksi, Phys. Rev. Lett. 52 (1984)1713.

    Google Scholar 

  58. D.K. Campbell, T.A. DeGrand and S. Mazumdar, Phys. Rev. Lett. 52 (1984)1717.

    Google Scholar 

  59. S. Kivelson, W.P. Su, J.R. Schrieffer and A.J. Heeger, Phys. Rev. Lett. 58 (1987)1899.

    Google Scholar 

  60. H. Takayama, Y.R. Lin-Liu and K. Maki, Phys. Rev. 821 (1980)2388.

    Google Scholar 

  61. C. Wu, X. Sun and K. Nasu, Phys. Rev. Lett. 59 (1987)831.

    Google Scholar 

  62. G.K. Corless and N.H. March, Phil. Mag. 6 (1961)1285.

    Google Scholar 

  63. See also, for example, the review by J.M. Ziman, Adv. Phys. 13 (1964)89.

    Google Scholar 

  64. F. Flores, N.H. March, Y. Ohmura and A.M. Stoneham, J. Phys. Chem. Sol. 40 (1979)531.

    Google Scholar 

  65. A.E. Carlsson, C.D. Gelatt and H. Ehrenreich, Phil. Mag. A41 (1980)241.

    Google Scholar 

  66. E. Esposito, A.E. Carlsson, D.D. Ling, H. Ehrenreich and C.D. Gelatt, Phil. Mag. A41 (1980)251.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

March, N.H. Strongly correlated electronic ground states in metals near the metal-insulator transition. J Math Chem 4, 271–293 (1990). https://doi.org/10.1007/BF01170017

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01170017

Keywords

Navigation