Skip to main content
Log in

Optimal control of classical molecular dynamics: A perturbation formulation and the existence of multiple solutions

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

This paper considers the prospect for there being multiple solutions to the control of classically modelled molecular dynamical systems. The research presented here follows up on a parallel study based on quantum mechanics. For polyatomic molecules it is generally expected that a classical mechanical model will be adequate and necessary as a means for designing optical fields for molecular control. The prospect for multiple control field solutions existing in this domain is important to establish in terms of ultimate laboratory realization of molecular control. A general formulation of the multiplicity problem is considered and the existence of a denumerably infinite number of solutions for the control field amplitude is shown to be the case under certain mild limitations on the physical variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Kwakernaak and R. Sivan,Linear Optimal Control (Wiley, New York, 1972).

    Google Scholar 

  2. A.E. Bryson and Y.C. Ho,Applied Optimal Control (Hemisphere, New York, 1975).

    Google Scholar 

  3. Aa.S. Sudbø, P.A. Schulz, E.R. Grant, Y.R. Shen and Y.T. Lee, J. Chem. Phys. 70 (1979) 912.

    Google Scholar 

  4. D.G. Luenberger,Introduction to Dynamic System, Theory, Models, and Applications (Wiley, New York, 1979).

    Google Scholar 

  5. T. Kailath,Linear Systems (Prentice-Hall, Englewood Cliffs, NJ, 1980).

    Google Scholar 

  6. D.J. Tannor and S.A. Rice, J. Chem. Phys. 83 (1985) 5013.

    Google Scholar 

  7. D.J. Tannor and S.A. Rice, Adv. Chem. Phys. 70 (1987).

  8. S.A. Rice and D.J. Tannor, J. Chem. Soc. Faraday Trans. 2, 82 (1986) 2423.

    Google Scholar 

  9. S. Shi, A. Woody and H. Rabitz, J. Chem. Phys. 88 (1988) 6870.

    Google Scholar 

  10. R. Kosloff, S. Rice, P. Gaspard, S. Tersigni and D. Tannor, Chem. Phys. 139 (1989) 201.

    Google Scholar 

  11. J. Manz, J. Chem. Phys. 91 (1989) 2190.

    Google Scholar 

  12. J.G.B. Beumee and H. Rabitz, J. Math. Phys. 31 (1990) 1253.

    Google Scholar 

  13. S. Shi and H. Rabitz, J. Chem. Phys. 92 (1990) 364.

    Google Scholar 

  14. S. Shi and H. Rabitz, J. Chem. Phys. 92 (1990) 2927.

    Google Scholar 

  15. M. Dahleh, A.P. Peirce and H. Rabitz, Phys. Rev. A42 (1990) 1065.

    Google Scholar 

  16. C.D. Schwieters, J.G.B. Beunee and H. Rabitz, J. Opt. Soc. Am. B7 (1990) 1736.

    Google Scholar 

  17. S. Shi and H. Rabitz, Comp. Phys. Comm. 63 (1991) 71.

    Google Scholar 

  18. L. Shen and H. Rabitz, J. Phys. Chem. 95 (1991) 1047.

    Google Scholar 

  19. P. Gross, D. Neuhauser and H. Rabitz, J. Chem. Phys. 94 (1991) 1158.

    Google Scholar 

  20. H. Rabitz and S. Shi, Adv. Mol. Vibr. and Coll. Dyn. (ed. Joel Bowman) 1-A (1991) 187.

  21. C.D. Schwieters and H. Rabitz, Phys. Rev. A44 (1991) 5224.

    Google Scholar 

  22. Y.S. Kim, H. Rabitz, A. A¢kar and J.B. McManus, Phys. Rev. B44 (1991) 4892.

    Google Scholar 

  23. P. Gross, D. Neuhauser and H. Rabitz, J. Chem. Phys. 96 (1992) 2834.

    Google Scholar 

  24. M. Demiralp and H. Rabitz, Phys. Rev. A47 (1993) 809.

    Google Scholar 

  25. M. Demiralp and H. Rabitz, Phys. Rev. A47 (1993) 830.

    Google Scholar 

  26. M.H. Lissak, J.D. Sensabaugh, C.D. Schwieters, J.G.B. Beumee and H. Rabitz, Optimal control of classical anharmonic molecules represented with piecewise harmonic potential surfaces: Analytic solution and selective dissociation of triatomic systems, to be published.

  27. C.D. Schwieters, K. Yao and H. Rabitz, A study of optimal molecular control in the harmonic regime: The methylene halide chemical series and fluorobenzene, to be published.

  28. C.D. Schwieters and H. Rabitz, Designing time-independent classically equivalent potentials to reduce quantum /classical observable differences using optimal control theory, to be published.

  29. K. Yao, S. Shi and H. Rabitz, Chem. Phys. 150 (1990) 373.

    Google Scholar 

  30. F.G. Tricomi,Integral Equations (Dover, New York, 1985).

    Google Scholar 

  31. P.R. Garabedian,Partial Differential Equations (Wiley, New York, 1962).

    Google Scholar 

  32. S. Chelkowski, A.D. Bandrauk, J. Chem. Phys. 89 (1988) 3618.

    Google Scholar 

  33. L. Shen, H. Rabitz, J. Phys. Chem. 95 (1991) 1047.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demiralp, M., Rabitz, H. Optimal control of classical molecular dynamics: A perturbation formulation and the existence of multiple solutions. J Math Chem 16, 185–209 (1994). https://doi.org/10.1007/BF01169206

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01169206

Keywords

Navigation