Skip to main content
Log in

Embedded units in conjugated polymers

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The problem of embedding of several monomeric units (benzene, thiophene, isothianaphthene) into linear oligoenes or into a polymer built up by the same units is discussed. Using a simple model Hamiltonian, we evaluate the geometry (bond lengths) and electronic structure (energy gaps) of conjugated oligomers containing up to 200 atoms. Special attention is paid to end effects. The quinoid-aromatic transition and the conjugation interruption due to embedded defects is studied in some detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Proc. Int. Conf. on Science and Technology on Synthetic Metals, Tübingen, Germany (1990), Synth. Metals 41–43.

  2. H. Kuzmany, M. Mehring and S. Roth (eds.),Electronic Properties of Conjugated Polymers I–III, Springer Series in Solid-State Sciences, Vols. 66, 76, 91 (1985–87–89).

  3. T.A. Skotheim (ed.),Handbook of Conducting Polymers (Marcel Dekker, New York, 1986).

    Google Scholar 

  4. J. Simon and J.J. André,Molecular Semiconductors (Springer, Berlin, 1985).

    Google Scholar 

  5. M. Kertész, Adv. Quant. Chem. 15 (1982)161.

    Google Scholar 

  6. C.K. Chiang, C.R. Fincher, Y.W. Park, A.J. Heeger, H. Shirakawa, E.J. Louis, S.C. Gau and A.G. MacDiarmid, Phys. Rev. Lett. 39 (1977)1089.

    Google Scholar 

  7. J.C.W. Chien,Polyacetylene, Chemistry, Physics and Material Science (Academic Press, Orlando, 1984).

    Google Scholar 

  8. H. Naarmann and N. Theophilu, Metals 22 (1987)1.

    Google Scholar 

  9. J. Tsukamoto and A. Takahashi, Metals 41 (1991)7.

    Google Scholar 

  10. R.E. Peierls,Quantum Theory of Solids (Clarendon, Oxford, 1955).

    Google Scholar 

  11. W.P. Su, J.R. Schriffer and A.J. Heeger, Phys. Rev. B22 (1980)2099.

    Google Scholar 

  12. C.R. Fincher, C.E. Chen, A.J. Heeger, A.G. MacDiarmid and J.B. Hastings, Phys. Rev. Lett. 48 (1982)100.

    Google Scholar 

  13. T.C. Clarke, R.D. Kendrick and C.S. Yannoni, J. de Phys. 44, C3 (1983)369.

    Google Scholar 

  14. F. Wudl, M. Kobayashi, N. Colaneri, M. Boysel and A.J. Heeger, Mol. Cryst. Liq. Cryst. 1l8 (1985)199;

    Google Scholar 

  15. M. Kobayashi, N. Colaneri, M. Boysel and A.J. Heeger, J. Chem. Phys. 82(1985)5717.

    Google Scholar 

  16. M. Kertész and P.R. Surjánn, Sol. Stat. Commun. 39 (1981)611.

    Google Scholar 

  17. P.R. Surján, H. Kuzmany and K. Iwahana, in:Phonon Physics, ed. J. Kollár, N. Kroó, N. Menyhárd and T. Siklós (World Scientific, Singapore, 1985).

    Google Scholar 

  18. P.R. Surján, A. Vibók, H. Kuzmany and K. Iwahana, Springer Series in Solid State Science, Vol. 63 (1985), p. 133.

    Google Scholar 

  19. P. Surjánn, and H. Kuzmany, Phys. Rev. B33 (1986)2615.

    Google Scholar 

  20. J. Kürti and H. Kuzmany, Springer Series in Solid State Sciences, Vol. 76 (1987), p. 43; Phys. Rev. B38(1988)5634.

    Google Scholar 

  21. J. Kürti and P.R. Surjánn, Springer Series in Solid State Sciences, Vol. 91 (1989), p. 69.

    Google Scholar 

  22. J. Kürti and H. Kuzmany, Phys. Rev. B44 (1991)597.

    Google Scholar 

  23. H.C. Longuet-Higgins and L. Salem, Proc. Roy. Soc. A251 (1959)172.

    Google Scholar 

  24. R. Pariser and R.G. Parr, J. Chem. Phys. 21 (1953)767.

    Google Scholar 

  25. C.A. Coulson, Proc. Roy. Soc. London A207 (1951)91.

    Google Scholar 

  26. A. Julg, G. Del Re and V. Barone, Phil. Mag. 35 (1977)517;

    Google Scholar 

  27. A. Julg, Lecture Notes in Chemistry, Vol, 9 (Springer, Berlin, 1978).

    Google Scholar 

  28. I. László and A. Julg, Acta Phys. Hung. 58 (1985)199.

    Google Scholar 

  29. G. Biczó, L. Polgár and M. Tomasek, Phil. Mag. A56 (1987)285.

    Google Scholar 

  30. J. Kürti and P.R. Surjánn, J. Chem. Phys. 92 (1990)3247.

    Google Scholar 

  31. J. Kürti, P.R. Surjánn, and M. Kertész, J. Amer. Chem. Soc. 113 (1992)9865.

    Google Scholar 

  32. Y.S. Lee and M. Kertész, J. Chem. Phys. 88 (1988)2609.

    Google Scholar 

  33. J.L. Br'das, A.J. Heeger and F. Wudl, J. Chem. Phys. 85 (1986)4673.

    Google Scholar 

  34. P. Sautet and C. Joachim, Chem. Phys. Lett. 153 (1988)511.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kürti, J., Surján, P.R. Embedded units in conjugated polymers. J Math Chem 10, 313–327 (1992). https://doi.org/10.1007/BF01169180

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01169180

Keywords

Navigation