Skip to main content
Log in

Chromophores in spectroscopy: Ab initio studies of localized descriptions of molecular electronic excitations

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

We review a computationally efficient approach, based jointly on the Random Phase Approximation (RPA) and on localized molecular orbitals, for calculating and analyzing electronic excitations in terms of the nature of the chromophore and its interaction with its molecular surroundings. The method is applied to two typical chromophoric systems using ab initio extended-basis calculations: the non-conjugated but electronically coupled ethylenic double bonds in norbornadiene (NBD, bicyclo[2.2.1]hepta-2,5-diene) and the chirally perturbed carbonyl chromophore inequatorial 4-methyladamantanone (EMAO). The analyses are a posteriori in nature but provide insights into the spectroscopic properties of medium-sized molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.N. Murrell,The Theory of the Electronic Spectra of Organic Molecules (Methuen, London, 1963).

    Google Scholar 

  2. P. Jørgensen and J. Simons,Second Quantization-Based Methods in Quantum Chemistry (Academic Press, New York, 1981).

    Google Scholar 

  3. Aa.E. Hansen and T.D. Bouman, Natural chiroptical spectroscopy: Theory and computations, Adv. Chem. Phys. 44 (1980)545.

    Google Scholar 

  4. T.D. Bouman and Aa.E. Hansen, Ab initio calculations and mechanistic analyses of optical activity of organic molecules with extended chromophores, Croat. Chim. Acta 62 (1989)227.

    Google Scholar 

  5. T.D. Bouman and Aa.E. Hansen, Linear response calculations of molecular properties using program RPAC: NMR shielding tensors of pyridine andn-azines, Int. J. Quant. Chem. Quant. Chem. Symp. 23 (1989)381.

    Google Scholar 

  6. O. Chalvet et al. (eds.),Localization and Delocalization in Quantum Chemistry, Vols. 1 and 2 (Reidel, Dordrecht, 1976).

    Google Scholar 

  7. P.R. Surján, Interaction of chemical bonds: Strictly localized wave functions in orthogonal basis, Phys. Rev. A30 (1984)43 and later papers.

    Google Scholar 

  8. A.E. Reed and F. Weinhold, Natural localized molecular orbitals, J. Chem. Phys. 83 (1985)1736 and later papers.

    Google Scholar 

  9. B. Kirtman, Molecular electronic structure by combination of fragments, J. Phys. Chem. 86 (1982)1059 and later papers, as reviewed in C.E. Dykstra and B. Kirtman, Local quantum chemistry, Ann. Rev. Phys. Chem. 41(1991)155–174.

    Google Scholar 

  10. D.E. LaLonde, J.D. Petke and G.M. Maggiora, Evaluation of approximations in molecular exciton theory, Part 1. Applications to dimeric systems of interest in photosynthesis, J. Phys. Chem. 92 (1988)4746; Part 2. Applications to oligomeric systems of interest in photosynthesis 93(1988)608.

    Google Scholar 

  11. J.D. Petke, Construction of chromophore orbitals, J. Chem. Phys. 93 (1990)2561.

    Google Scholar 

  12. P. Pulay, Localizability of dynamic electron correlation, Chem. Phys. Lett. 100 (1983)151 and later papers.

    Google Scholar 

  13. C.J. Ballhausen and Aa.E. Hansen, Electronic spectra, Ann. Rev. Phys. Chem. 23 (1972)15.

    Google Scholar 

  14. Aa.E. Hansen and T.D. Bouman, Hypervirial relations as constraints in calculations of electronic excitation properties: The random phase approximation in configuration interaction language, Mol. Phys. 37 (1979)1713.

    Google Scholar 

  15. J. Oddershede, P. Jørgensen and D.L. Yeager, Polarization propagator methods in atomic and molecular calculations, Comp. Phys. Rep. 2 (1984)33.

    Google Scholar 

  16. T.D. Bouman, B. Voigt and Aa.E. Hansen, Optical activity of saturated ketones: Ab initio localized orbital analysis of a model ketone in the random phase approximation, J. Amer. Chem. Soc. 101 (1979)550.

    Google Scholar 

  17. D. Lynch, M.F. Herman and D.L. Yeager, Excited state properties from the equations of motion method. Application of the MCTDHF-MCRPA to the dipole moments and oscillator strengths of AIΠ, a3Π, a′3Σ+, and d3Δ low-lying valence states of CO, Chem. Phys. 64 (1982)69.

    Google Scholar 

  18. Aa.E. Hansen and T.D. Bouman, Optical activity of mono-olefins: RPA calculations and extraction of the mechanisms in Kirkwood's theory. Application to (−)-trans-cyclooctene and 3(R)-methylcyclopentene, J. Amer. Chem. Soc. 107 (1985)4828.

    Google Scholar 

  19. J.M. Foster and S.F. Boys, Canonical configuration interaction procedure, Rev. Mod. Phys. 32 (1960)300.

    Google Scholar 

  20. T.D. Bouman, Aa.E. Hansen, B. Voigt and S. Rettrup, Large-scale RPA calculations of chiroptical properties of organic molecules: Program RPAC, Int. J. Quant. Chem. 23 (1983)595.

    Google Scholar 

  21. J.G. Kirkwood, On the theory of optical rotatory power, J. Chem. Phys. 5 (1937)479; Remarks on the theory of optical activity, J. Chem. Phys. 7(1939)139.

    Google Scholar 

  22. J.A. Schellman, Symmetry rules for optical rotation, Ace. Chem. Res. l (1968)144.

    Google Scholar 

  23. J. Olsen, H.J.Aa. Jensen and P. Jørgensen, Solution of the large matrix equations which occur in response theory, J. Comp. Phys. 74 (1988)265.

    Google Scholar 

  24. J.P. Doering and R. McDiarmid, An electron impact investigation of the forbidden and allowed transitions in norbornadiene, J. Chem. Phys. 75 (1981)87.

    Google Scholar 

  25. D.A. Lightner, J.K. Gawroński and T.D. Bouman, Electronic structure of symmetric homoconjugated dienes: Circular dichroism of (1S)-2-deuterio- and 2-methylnorbornadiene and (1S)-2-deuterio and 2-methylbicyclo[2.2.2]octadiene, J. Amer. Chem. Soc. 102 (1980)5749.

    Google Scholar 

  26. C.F. Wilcox, Jr., S. Winstein and W.G. McMillan, Neighboring carbon and hydrogen, 34. Interaction of non-conjugated chromophores, J. Amer. Chem. Soc. 82 (1960)5450.

    Google Scholar 

  27. R. Hoffmann, Interaction of orbitals through bonds and through spaces, Acc. Chem. Res. 4 (1971)1.

    Google Scholar 

  28. V. Galasso, Ab initio calculations on the one-photon and two-photon electronic transitions of cyclopentadiene, spirononatetraene, 1,4-cyclohexadiene, Dewar benzene, norbornadiene, and barrelene, Chem. Phys. 153 (1991)13.

    Google Scholar 

  29. M.J. Frisch, M. Head-Gordon, G.W. Trucks, J.B. Foresman, H.B. Schlegel, K. Raghavachari, M.A. Robb, J.S. Binkley, C. Gonzalez, D.J. Defrees, D.J. Fox, R.A. Whiteside, R. Seeger, C.F. Melius, J. Baker, R.L. Martin, L.R. Kahn, J.J.P. Stewart, S. Topiol and J.A. Pople, Gaussian 90 (Gaussian, Inc., Pittsburgh, PA, 1990).

    Google Scholar 

  30. T.D. Bouman and Aa.E. Hansen,RPAC Molecular Properties Package, Version 9.OX (Southern Illinois University at Edwardsville, 1991).

    Google Scholar 

  31. K. Gilbert and J. Gajewski,Program PCMODEL (Serena Software, P.O. Box 3076, Bloomington, IN 47402).

  32. T. Dunning and J. Hay, Gaussian basis sets for molecular calculations, in:Methods of Electronic Structure Theory, Vol. 3, ed. H.F. Schaefer III (Plenum, New York, 1977).

    Google Scholar 

  33. W.L. Jorgensen and L. Salem,The Organic Chemist's Book of Orbitals (Academic Press, New York, 1973);

    Google Scholar 

  34. H. Morrison, W.L. Jorgensen, B. Bigot, D. Severance, Y. Munoz-Solo, R. Strommen and B. Pandey, Delta plots — a new way to visualize electronic excitation, J. Chem. Educ. 62(1985)298.

    Google Scholar 

  35. T.D. Bouman and Aa.E. Hansen, Electronic spectra of mono-olefins. RPA calculations on ethylene, propene, andcis andtrans-2-butene, Chem. Phys. Lett. 117 (1985)461.

    Google Scholar 

  36. S. Bohan and T.D. Bouman, RPA calculations and analysis of the electronic states of cyclopropane and of the chiroptical properties of its methyl derivatives, J. Amer. Chem. Soc. 108 (1986)3261.

    Google Scholar 

  37. A. Moscowitz, Some applications of the Kronig-Kramers theorem to optical activity, Tetrahedron 13 (1961)48;

    Google Scholar 

  38. A. Moscowitz, Theoretical aspects of optical activity, Part 1: Small molecules, Adv. Chem. Phys. 4(1962)67.

    Google Scholar 

  39. W. Moffitt, R.B. Woodward, A. Moscowitz, W. Klyne and C. Djerassi, Structure and optical rotatory dispersion of saturated ketones, J. Amer. Chem. Soc. 83 (1961)4013.

    Google Scholar 

  40. D.A. Lightner, T.D. Bouman, W.M.D. Wijekoon and Aa.E. Hansen, Mechanism of ketonen → π* optical activity. Experimental and computed chiroptical properties of 4-axial and 4-equatorial alkyladamantanones, J. Amer. Chem. Soc. 108 (1986)4484.

    Google Scholar 

  41. A. Rodger and P.M. Rodger, The circular dichroism of the carbonyln → π* transition: An independent systems/perturbation approach, J. Amer. Chem. Soc. 110 (1988)2361.

    Google Scholar 

  42. A. Rodger and M.G. Moloney,n → π* circular dichroism of planar zigzag carbonyl compounds, J. Chem. Soc. Perkin Trans. II (1991)919.

    Google Scholar 

  43. C.C. Levin, R. Hoffmann, W.J. Hehre and J. Hudec, Orbital interactions in amino-ketones, J. Chem. Soc. Perkin Trans. II (1973)210.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, A.E., Bouman, T.D. Chromophores in spectroscopy: Ab initio studies of localized descriptions of molecular electronic excitations. J Math Chem 10, 221–247 (1992). https://doi.org/10.1007/BF01169176

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01169176

Keywords

Navigation