Skip to main content
Log in

Common theoretical framework for quantum chemical solvent effect theories

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Quantum chemical solvent effect theories deal with the description of the electronic structure of a molecular subsystem embedded in a solvent or other molecular environment. The average reaction field theories, which describe electrostatic and polarization interactions between solute and solvent, can be formulated in terms of a nonlinear reaction potential operator. This operator depends on the one hand on the reaction potential function of the solvent, and on the other hand on the charge density operators, which appear in the solute-solvent interaction. The former quantity is determined by the physical model of the solvent (e.g. dielectric continuum, discrete model, crystal lattice, etc.). The charge density operator can be approximated at different levels, like exact, one-centered and multicentered multipolar forms. These two ingredients of the theory, the reaction potential response function and the specific charge density operator, define unequivocally different solvent effect models. Various versions of average reaction field models are critically reviewed on the basis of this common theoretical framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.T. Hynes, The theory of reactions in solutions, in:The Theory of Chemical Reaction Dynamics, Vol. 4, ed. M. Baer (CRC Press, Boca Raton, 1985), chap. 4, p. 171.

    Google Scholar 

  2. O. Tapia, C.I. Brändén and A.M. Armbruster, Recent quantum/statistical mechanical studies on enzyme activity. Serine proteases and alcohol dehydrogenases, in:Quantum Theory of Chemical Reactions, Vo. 3, ed. R. Daudel, A. Pullman, L. Salem and A. Veillard (Reidel, Dordrecht, 1982), p. 97.

    Google Scholar 

  3. O. Tapia, Theoretical evaluation of solvent effects, in:Theoretical Models of Chemical Bonding, ed. Z.B. Maksić (Springer, Berlin, 1991), chap. 11, p. 435.

    Google Scholar 

  4. J.L. Rivail and D. Rinaldi, A quantum chemical approach to dielectric solvent effects in molecular liquids, Chem. Phys. 18 (1976)233.

    Google Scholar 

  5. J.L. Rivail, B. Terryn, D. Rinaldi and M.F. Ruiz-Lopez, Liquid state quantum chemistry: A cavity model, J. Mol. Struct. (THEOCHEM) 120 (1985)387.

    Google Scholar 

  6. J.L. Rivail, D. Rinaldi and M.F. Ruiz-Lopez, The self-consistent reaction field model for molecular computations in solutions, in:Theoretical and Computational Models for Organic Chemistry, ed. S.J. Formosinho and I.G. Csizmadia (Kluwer, Dordrecht, 1991), p. 79.

    Google Scholar 

  7. O. Tapia, An overview of the theory of chemical reactions and reactivity in enzymes and solution, in:Molecules in Physics, Chemistry and Biology, ed. J. Maruani (Reidel, Dordrecht, 1987).

    Google Scholar 

  8. S. Miertuš, E. Scrocco and J. Tomasi, Electrostatic interaction of a solute with a continuum. A direct utilisation of ab initio molecular potentials for the prevision of solvent effects, Chem. Phys. 55 (1981)117.

    Google Scholar 

  9. R. Bonaccorsi, C. Ghio and J. Tomasi, The effect of the solvent on electronic transitions and other properties of molecular solutes, in:Current Aspects of Quantum Chemistry, 1981 (Studies in Physical and Theoretical Chemistry, ed. R. Carbó (Elsevier, Amsterdam, 1982), p. 407.

    Google Scholar 

  10. H.J. Kim and J.T. Hynes, Equilibrium and nonequilibrium solvation and solute electronic structure, Int. J. Quant. Chem. Quant. Chem. Symp. 24 (1990)821.

    Google Scholar 

  11. G. Klopman, Solvatons: A semi-empirical procedure for including solvation in quantum mechanical calculations of large molecules, Chem. Phys. Lett. 1 (1967)200.

    Google Scholar 

  12. D. Rinaldi and J.L. Rivail, Polarisabilités moléculaires et effet diéléctrique de milieu ä l'état liquide. Etude théorique de la molécule d'eau et de ses dimères, Theor. Chim. Acta 32 (1973)57.

    Google Scholar 

  13. M.D. Newton, Ab initio Harttee-Fuck calculations with inclusion of a polarized dielectric. Formalism and application to the ground state hydrated electron, J. Chem. Phys. 58 (1973)5833.

    Google Scholar 

  14. O. Tapia and O. Goscinski, Self-consistent reaction field theory of solvent effects, Mol. Phys. 29 (1975)1653.

    Google Scholar 

  15. H.A. Germer, Jr., Solvent interaction within the Harttee-Fock SCF molecular orbital formalism, Theor. Chim. Acta 34 (1974)145.

    Google Scholar 

  16. H.A. Germer, Jr., Solvent interaction within the Harttee-Fock SCF molecular orbital formalism, Additional comment, Theor. Chim. Acta 35 (1974)273.

    Google Scholar 

  17. S. Miertuš, and O. Kysel, Quantum chemical study of radical ions and molecules incorporating solvent effect. I. Solvent effect within the π (PPP-like) and CNDO methods, Chem. Phys. 21 (1977)27.

    Google Scholar 

  18. S. Miertuš, and O. Kysel, Quantum chemical study of radical ions and molecules incorporating the solvent effect. II. Calculation of electronic transitions and spin densities of various conjugated radical anions inp-approximation, Chem. Phys. 21 (1977)33.

    Google Scholar 

  19. S. Miertuš, and O. Kysel, Quantum chemical study of radical ions and molecules incorporating the solvent effect. III. Calculation of electronic spectra of conjugated radical anions in CNDO and INDO approximations by Longuet-Higgins-Pople and Roothaan restricted methods, Chem. Phys. 21 (1977)47.

    Google Scholar 

  20. S. Miertuš, and O. Kysel, Quantum chemical study of radical ions and molecules incorporating the solvent effect. Comment on the method of incorporation of the solvent effect, Chem. Phys. Lett. 65 (1979)395.

    Google Scholar 

  21. A. Raudino, Solute polarization effects on the solvation energy, J. Chem. Soc. Faraday Trans. 2 (1981)2365.

    Google Scholar 

  22. F. Zuccarello, A. Raudino and G. Buemi, Self-consistent reaction field calculations of the solvent effect on absorption and emissionn, π* transitions of diazines, Chem. Phys. 84 (1984)209.

    Google Scholar 

  23. R. Constanciel and O. Tapia, On the theory of solvent effects. The virtual charge model to represent the solvent polarization, Theor. Chim. Acta 48 (1978)75.

    Google Scholar 

  24. R. Constanciel, The virtual charge model of a polarizable medium as a basis for Hückel calculations with theω-technique, Theor. Chim. Acta 54 (1980)123.

    Google Scholar 

  25. R. Constanciel and R. Contreras, Self-consistent field theory of solvent effects representation by continuum models: Introduction of desolvation contribution, Theor. Chim. Acta 65 (1984)1.

    Google Scholar 

  26. R. Contreras and A. Aizman, On the SCF theory of continuum solvent effects representation: Introduction of local dielectric effects, Int. J. Quant. Chem. 27 (1985)293.

    Google Scholar 

  27. L. Onsager, Electric moments of molecules in liquids, J. Amer. Chem. Soc. 58 (1936)1486.

    Google Scholar 

  28. O. Tapia, On the theory of solvent-effect representation. I. A generalized self-consistent reaction field theory, J. Mol. Struct. (THEOCHEM) 226 (1991)59.

    Google Scholar 

  29. J.G. Ángyán and P.R. Surján, Normalization corrections to perturbation theory for the time-dependent Schrödinger equation, Phys. Rev. A44 (1991)2188.

    Google Scholar 

  30. J.G. Ángyán, F. Colonna and G. Jansen, MUPP: A multi-purpose package for solvent effect calculations (1992), in preparation.

  31. H.J. Kim and J.T. Hynes, Equilibrium and nonequilibrium solvation and solute electronic structure. I. Formulation, J. Chem. Phys. 93 (1990)5194.

    Google Scholar 

  32. R. Constanciel and R. Contreras Ramos, Sur le traitement des effecs électrostatiques das au solvant en chimie quantique. Definition de l'opérateur de Fock effectif du solute, C.R. Acad. Sci. Paris 296 (1983)333.

    Google Scholar 

  33. J.E. Sanhueza, O. Tapia, W.G. Laidlaw and M. Trsic, On the application of the variational principle to a type of nonlinear Schrödinger equation, J. Chem. Phys. 70 (1979)3096.

    Google Scholar 

  34. O. Tapia, Local field representation of surrounding medium effects. From liquid solvent to protein core effects, in:Quantum Theory of Chemical Reactions, Vol. 2, ed. R. Daudel, A. Pullman, L. Salem and A. Veillard (Reidel, Dordrecht, 1980), p. 25.

    Google Scholar 

  35. R. Constanciel and R. Contreras Ramos, Sur le traitement des effecs électrostatiques das au solvant en chimie quantique. Introduction des effecs de désolvatation par extension de la formule de Born généralisée, C.R. Acad. Sci. Paris 296 (1983)417.

    Google Scholar 

  36. R. Constanciel, Theoretical basis of the empirical reaction field approximation through continuum model, Theor. Chim. Acta 69 (1986)505.

    Google Scholar 

  37. J.G. Ángyán and B. Silvi, Electrostatic interactions in three-dimensional solids. Self-consistent Madelung potential (SCMP) approach, J. Chem. Phys. 86 (1987)6957.

    Google Scholar 

  38. J.O. Noell and K. Morokuma, A simple model of solvation within the molecular orbital theory, Chem. Phys. Lett. 36 (1975)465.

    Google Scholar 

  39. J.O. Noell and K. Morokuma, A fractional charge model in the molecular orbital theory and its application to molecules in solutions and solids, J. Phys. Chem. 80 (1976)2675.

    Google Scholar 

  40. C. Pisani, R. Dovesi and C. Roetti, Hartree-Fock ab initio treatment of crystalline systems, in: Lecture Notes in Chemistry (Springer, Berlin, 1986).

    Google Scholar 

  41. G.G. Hall, Point charge models for molecular properties, Chem. Phys. Lett. 20 (1973)501.

    Google Scholar 

  42. A.J. Stone, Distributed multipole analysis, or how to describe a molecular charge distribution, Chem. Phys. Lett. 83 (1981)233.

    Google Scholar 

  43. A.J. Stone and M. Alderton, Distributed multipole analysis. Methods and applications, Mol. Phys. 56 (1985)1047.

    Google Scholar 

  44. F. Vigné-Maeder and P. Claverie, The exact multicenter multipolar part of a molecular charge distribution and its simplified representations, J. Chem. Phys. 88(1988)4934.

    Google Scholar 

  45. W.A. Sokalski and R.A. Poirier, Cumulative atomic multipole representation of the molecular charge distribution and its basis set dependence, Chem. Phys. Lett. 98 (1983)86.

    Google Scholar 

  46. W.A. Sokalski and A. Sawaryn, Correlated molecular and cumulative atomic multipole moments, J. Chem. Phys. 87 (1987)526.

    Google Scholar 

  47. A. Sawaryn and W.A. Sokalski, Cumulative atomic multipole moments and point charge models describing molecular charge distributions, Comput. Phys. Commun. 52 (1989)397.

    Google Scholar 

  48. C.J.F. Böttcher, O.C. van Belle, P. Bordewijk and A. Rip,Theory of Electric Polarization, Vol. 1 (Elsevier, Amsterdam, 1973).

    Google Scholar 

  49. E.F. Bertaut, The equivalent charge concept and its application to the electrostatic energy of charges and multipoles, J. Phys. 39 (1978)1331.

    Google Scholar 

  50. J.G. Ángyán, M. Allavena, M. Picard, A. Potier and O. Tapia, A SCRF-CNDO/2 study on proton conductivity mechanisms in hydronium perchlorate. Towards a quantum chemical representation of defects and impurities in crystals, J. Chem. Phys. 77 (1982)4723.

    Google Scholar 

  51. J.G. Kirkwood, Theory of solutions of molecules containing widely separated charges with special application to zwitterions, J. Chem. Phys. 2 (1934)351.

    Google Scholar 

  52. D.L. Beveridge and G.W. Schnuelle, Free energy of a charge distribution in concentric dielectric continua, J. Phys. Chem. 79 (1975)2562.

    Google Scholar 

  53. H. Block and S.M. Walker, A modification of the Onsager theory for a dielectric, Chem. Phys. Lett. 19 (1973)363.

    Google Scholar 

  54. A. Raudino, F. Zuccarello and G. Buemi, Electrostatic solvation energy in media with spatially varying dielectric permittivity, Chem. Phys. 145 (1986)127.

    Google Scholar 

  55. K.V. Mikkelsen, H. Ågren, H. Jorgen and Aa. Jensen, A multiconfigurational self-consistent reaction-field method, J. Chem. Phys. 89 (1988)3086.

    Google Scholar 

  56. C.E. Felder and J. Applequist, Energies of solute molecules from an atom charge-dipole interaction model with a surrounding dielectric: Application to Gibbs energies of proton transfer between carboxylic acids in water, J. Chem. Phys. 75 (1981)2390.

    Google Scholar 

  57. J.L. Rivail and B. Terryn, Energie libre d'une distribution de charges électriques séparée d'un milieu diélectrique infini par une cavité ellipsoidale quelqonque. Application a l'étude de la solvatation des molecules, J. Chim. Phys. 79 (1982)1.

    Google Scholar 

  58. D. Rinaldi, Lamé's function and ellipsoidal harmonics for use in chemical physics, Comput. Chem. 6 (1982)155.

    Google Scholar 

  59. R. Bonaccorsi, R. Cimiraglia and J. Tomasi, Ab initio evaluation of absorption and emission transitions for molecular solutes, including separate consideration of orientational and inductive solvent effects, J. Comput. Chem. 4 (1983)567.

    Google Scholar 

  60. J. Langlet, P. Claverie, J. Caillet and A. Pullman, Improvements of the continuum model. l. Application to the calculation of the vaporization thermodynamic quantities of nonassociated liquids, J. Phys. Chem. 92 (1988)1617.

    Google Scholar 

  61. E. Durand,Electrostatique, Vol. 3 (Masson, Paris, 1966).

    Google Scholar 

  62. M.J. Huron and P. Claverie, Calculation of the interaction energy of one molecule with its whole surrounding. I. Method and application to pure nonpolar compounds, J. Phys. Chem. 76 (1972)2123.

    Google Scholar 

  63. I. Jano, Sur l'énergie de solvatation, C.R. Acad. Sci. Paris 261 (1965)103.

    Google Scholar 

  64. G. Klopman and P. Andreozzi, Solvatons. II. Aqueous dissociation of hydrides in the MINDOS approximation, Theor. Chim. Acta 55 (1980)77.

    Google Scholar 

  65. C.J. Cramer and D.G. Truhlar, General parametrized SCF model for free energies of solvation in aqueous solutions, J. Amer. Chem. Soc. 113 (1991)8305, 9901.

    Google Scholar 

  66. H.C. Longuet-Higgins, The electronic states of composite systems, Proc. Roy. Soc. A235 (1956)537.

    Google Scholar 

  67. P. Otto and J. Ladik, Investigation of the interaction between molecules at medium distances. I. SCF LCAO MO supermolecule and mutually consistent calculations for two interacting HF and CH2O molecules, Chem. Phys. 8 (1975)192.

    Google Scholar 

  68. P. Otto and J. Ladik, Investigation of the interaction between molecules at medium distances. II. Perturbational MCF calculations with directly integrated potentials and in the monopole approximation, Chem. Phys. 19 (1977)209.

    Google Scholar 

  69. P. Otto, Ab initio calculations of the vertical interaction between two and three cytosine molecules, Chem. Phys. Lett. 62 (1979)538.

    Google Scholar 

  70. W. Fömer, P. Otto, J. Bernhardt and J. Ladik, A model study of the intermolecular interactions of amino acids in aqueous solution: The glycine-water system, Theor. Chim. Acta 60 (1981)269.

    Google Scholar 

  71. P. Otto, The pseudo-polarization tensor mutually consistent field (PPT-MCF) method: A new approach to study intermolecular interactions and its application to dimeric and trimeric water configurations, Int. J. Quant. Chem. 28 (1985)895.

    Google Scholar 

  72. H. Weinstein, J. Eilers and S.Y. Chang, A modified Hamiltonian method for the study of multiple site reactivity: Comparison with perturbation results, Chem. Phys. Lett. 51 (1977)534.

    Google Scholar 

  73. V. Magnasco, Self-consistent theory of induction and dispersion forces in the Hartree-Fock approximation, Mol. Phys. 37 (1979)37.

    Google Scholar 

  74. A.J. Sadlej, Long range induction and dispersion interactions between Hartree-Fock subsystems, Mol. Phys. 39 (1980)1249.

    Google Scholar 

  75. M. Gutowski and L. Piela, Interpretation of the Hartree-Fock interaction energy between closed shell-systems, Mol. Phys. 64 (1988)337.

    Google Scholar 

  76. P.R. Surján, The two-electron bond as a molecular building block, in:Theoretical Models of Chemical Bonding, Vol. 4, ed. Z.B. Maksić (Springer, Berlin, 1991), chap. 6, p. 205.

    Google Scholar 

  77. K.L.C. Hunt, Nonlocal polarizability densities and Van den Waals interactions, J. Chem. Phys. 788 (1983)6149.

    Google Scholar 

  78. B. Blaive and J. Metzger, Energie libre éléctrostafque de solvatation. I, Travail global et expression énérgetique décomposé, Nuov. J. Chim. 7 (1983)361.

    Google Scholar 

  79. J.G. Ángyán, in preparation.

  80. A.J. Stone, The induction energy of an assembly of polarizable molecules, Chem. Phys. Lett. 155 (1989)102.

    Google Scholar 

  81. C.G. Gray and K.E. Gubbins,Theory of Molecular Fluids: Fundamentals, Vol. 1 (Clarendon Press, Oxford, 1984).

    Google Scholar 

  82. O. Tapia and G. Johannin, An inhomogeneous self-consistent reaction field theory of protein core effects, Towards a quantum scheme for describing enzyme reactions, J. Chem. Phys. 75 (1981)3624.

    Google Scholar 

  83. J.G. Ángyán and G. Náray-Szabó, Effect of hydration on the FH ... NH3 proton transfer reaction: comparison of some quantum chemical approximations, Theor. Chim. Acta 64 (1983)27.

    Google Scholar 

  84. Y. Hannachi and J.G. Ángyán, The role of induction forces in infrared matrix shifts: Quantum chemical calculations with reaction field model Hamiltonian, J. Mol. Struct. (THEOCHEM) 232 (1991)97.

    Google Scholar 

  85. J.G. Ángyán, F. Colonna-Cesari and O. Tapia, Analytical first and second energy derivatives in the polarization model, Chem. Phys. Lett. 166 (1990)180.

    Google Scholar 

  86. B.T. Thole and P.Th. van Duijnen, The direct reaction field Hamiltonian: Analysis of the dispersion term and application to the water dimer, Chem. Phys. 71 (1982)211.

    Google Scholar 

  87. R. Carbo and C. Amau, A general representation of atomic orbital charge distributions with some applications to Mulliken's approximation and population analysis, Gaz. Chim. Ital. 108 (1978)171.

    Google Scholar 

  88. D.L. Beveridge and G.W. Schnuelle, Statistical thermodynamic consideration of solvent effects on conformational stability. The supermolecule-continuum model, J. Phys. Chem. 78 (1974)2064.

    Google Scholar 

  89. G.W. Schnuelle and D.L. Beveridge, A statistical thermodynamic supermolecule continuum study of ion hydration. I. Site method, J. Phys. Chem. 79 (1975)2566.

    Google Scholar 

  90. G.W. Schnuelle, S. Swaminathan and D.L. Beveridge, A statistical thermodynamic supermoleculecontinuum study of ion hydration: Cell and shell methods, Theor. Chim. Acta 48 (1978)17.

    Google Scholar 

  91. O. Sinanoglu, The C-potential surface for predicting conformations of molecules in solution, Theor. Chim. Acta 33 (1974)279.

    Google Scholar 

  92. F. Achenbach and R. Zahradník, Interactions between bio(macro)molecules: Models and methods, J. Mol. Struct. (THEOCHEM) 179 (1988)249.

    Google Scholar 

  93. R. Kubo, M. Toda and N. Hashirsume,Statistical Physics II. Nonequilibrium Statistical Mechanics, Vol. 2 (Springer, Berlin 1985).

    Google Scholar 

  94. S. Yomosa, On the basic equation for the equilibrium electronic states in polar solvents, Broken symmetry, J. Phys. Soc. Japan 44 (1978)602.

    Google Scholar 

  95. J. Almlöf and U. Wahlgren, Hydrogen bond studies. Ab initio studies, of the conformation of the oxonium ion in solids, Theor. Chim. Acta 28 (1973)161.

    Google Scholar 

  96. M. Tsukada, Self-consistent Madelung potential for the cluster calculations of partially ionic solids. Application to ReO3, J. Phys. Soc. Japan 49 (1980)1183.

    Google Scholar 

  97. Z. Barandiarán, L. Pueyo and F. Gómez Beltrán, The cluster-lattice interaction in the calculation of the electronic structure of CrF 3−6 in K2NaCrF6, J. Chem. Phys. 78 (1983)4612.

    Google Scholar 

  98. M.C. Böhm, A simple self-consistent electrostatic field approximation for neighbour strand interactions in band structure calculations, Chem. Phys. Lett. 89 (1982)126.

    Google Scholar 

  99. J. Zyss and G. Berthier, Nonlinear optical properties of organic crystals with hydrogen-bonded molecular units: The case of urea, J. Chem. Phys. 77 (1982)3635.

    Google Scholar 

  100. P. Popelier, A.T.H. Lenstra, C. van Alsenoy and H.J. Geise, An ab initio study of crystal field effects: Solid-state and gas-phase of acetamide, J. Amer. Chem. Soc. 111 (1989)5658.

    Google Scholar 

  101. W.A. Sokalski, P.B. Keegstra, S. Roszak and J.J. Kaufman, Cumulative atomic multipole moments for molecular crystals from ab initio crystal orbital wave functions and for molecules in excited states from ab initio MRD-CI wave functions, Int. J. Quant. Chem. Quant. Chem. Symp. 24 (1990)51.

    Google Scholar 

  102. P.G. Cummins, D.A. Dunmur, R.W. Munn and R.J. Newham, Applications of the Ewald method. I. Calculation of multipole lattice sums, Acta Cryst. A32 (1976)847.

    Google Scholar 

  103. M. Catti, Electrostatic lattice energy in ionic crystals: Optimization of the convergence of Ewald series, Acta Cryst. A34 (1978)974.

    Google Scholar 

  104. L.M. Sesé, A. Banón and M. Fernández, Liquid phase effects on molecular properties, J. Mol. Struct. (THEOCHEM) 92 (1983)231.

    Google Scholar 

  105. L.M. Sesé and M. Fernández, Molecular properties in liquid phase, J. Mol. Struct. (THEOCHEM) 93 (1983)261.

    Google Scholar 

  106. L.M. Sesé and M. Fernández, Molecular properties of acetone in carbon disulfide solution (1:124), J. Mol. Struct. (THEOCHEM) 107 (1984)101.

    Google Scholar 

  107. L.M. Sesé, A molecular quantum mechanics approach to evaluate molecular properties in liquid phase using statistical mechanics, J. Mol. Liquids 30 (1985)185.

    Google Scholar 

  108. J.A.C. Rullmann and P.T. van Duijnen, Potential energy models of biological macromolecules: A case for ab initio quantum chemistry, Rep. Mol. Theory 1 (1990)1.

    Google Scholar 

  109. J.G. Ángyán, and G. Jansen, Are direct reaction field methods appropriate for describing dispersion interactions?, Chem. Phys. Lett. 175 (1990)313.

    Google Scholar 

  110. A.D. Buckingham, Basic theory of intermolecular forces: Application to small molecules, in:Intermolecular Interactions: From Diatomics to Biopolymers, Vol. 1, ed. B. Pullman (Wiley Interscience, New York, 1978), chap. 1, p. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from Quantum Theory Group, Institute of Physics, Technical University of Budapest, Budafoki út 8, H-1521 Budapest, Hungary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ángyán, J.G. Common theoretical framework for quantum chemical solvent effect theories. J Math Chem 10, 93–137 (1992). https://doi.org/10.1007/BF01169172

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01169172

Keywords

Navigation