Skip to main content
Log in

Self-consistent, nonorthogonal group function approximation: An ab initio approach for modelling interacting fragments and environmental effects

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The reformulation of the single determinantal, closed shell wavefunction into an antisymmetrized product of nonorthogonal group functions (NOGF) is reviewed. It is shown that by introducing the idea of a “reciprocal” group function, i.e. a group function defined as a product of reciprocal orbitals, the resulting expressions for one- and two-electron operators are formally identical with the equations obtained using strong-orthogonal group functions. Orbital equations are given for the NOGF wavefunction which are derived by formulating a variation principle in terms of group energy functionals, where the presence of the other groups is expressed in terms of Coulomb and exchange operators in the group's Hamiltonian, To ensure that the group's orbitals do not violate the Pauli exclusion principle, a coupling or screening operator is introduced into the variational equations. The effectiveness of the coupling operator is discussed and it is demonstrated that it fully screens the group's orbitals from collapsing or distorting into forbidden regions of function space. To provide techniques for modelling and analyzing intermolecular interactions, the procedure for calculating the NGOF wavefunction can be reformulated into a series of steps which allows the components of the interaction energy, i.e. Coulomb, exchange, polarization and charge transfer, to be evaluated. This approach leads to considerable simplification and reduces the computational effort required to determine the wavefunction. The decomposition is used to analyze many-body effects in linear water chains and a model of a helical hydrogen bonding. The basis set superposition error (BSSE) in the NOGF approximation is discussed and methods for its evaluation are given, and it is shown that the BSSE is inherently less in the NOGF wavefunction than in the corresponding HF-SCF wavefunction. In the final parts of the paper, additional methods are given which further reduce computation time when both interacting fragments and their immediate environment must be considered at the quantum chemical level. These techniques are then applied to a study of the effect of environment on ion pair formation and proton transfer. The results of these studies demonstrate the remarkably strong modulating effect of molecules hydrogen bonded to the interacting pair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Simons, J. Phys. Chem. 95 (1991)1017.

    Google Scholar 

  2. I. Flemming,Frontier Orbitals and Organic Chemical Reactions (Wiley, London, 1976).

    Google Scholar 

  3. R.J. Bartlett, J. Phys. Chem. 93 (1989)1697.

    Google Scholar 

  4. R. Ahlrichs and P. Scharf,Ab Initio Methods in Quantum Chemistry, Vol. l, ed. K.P. Lawley (Wiley, 1987), pp. 501–537.

  5. B.O. Roos, ibid., Vol. 2, pp. 399–446.

  6. H.-J. Werner, ibid., pp. 1–62.

  7. W.J. Hehre, L. Radom, P. von Schleyer and J.A. Pople,Ab Initio Molecular Orbital Theory (Wiley, New York, 1986).

    Google Scholar 

  8. E. Clementi, G. Corongiu and S. Chakravorty, in:Modern Techniques in Computational Chemistry, ed. E. Clementi (ESCOM, Leiden, 1990), pp. 343–434.

    Google Scholar 

  9. A. Warshel, Nature 330 (1987)15.

    PubMed  Google Scholar 

  10. J. Warwicker and H.C. Watson, J. Mol. Biol. 157 (1982)671.

    PubMed  Google Scholar 

  11. E.L. Mehler and G. Eichele, Biochem. 23 (1984)3887.

    Google Scholar 

  12. A. Warshel and M. Levitt, J. Mol. Biol. 103 (1976)227.

    PubMed  Google Scholar 

  13. M.L.J. Drummond, Progr. Biophys. Mol. Biol. 47 (1986)1.

    Google Scholar 

  14. O. Tapia, in:Molecular Interactions, Vol. 3, ed. H. Ratajczak and W.J. Orville-Thomas (Wiley, 1982), pp. 47–117.

  15. G. Karlström, J. Phys. Chem. 92 (1988)1315, 1318.

    Google Scholar 

  16. B.T. Thole and P.T. van Duijnen, Theor. Chim. Acta 55 (1981)307.

    Google Scholar 

  17. R. Ahlrichs, Theor. Chim. Acta 33 (1974)157.

    Google Scholar 

  18. Y. Dycmons, ibid. 28 (1973)307.

    Google Scholar 

  19. S. Wilson,Electron Correlation in Molecules (Clarendon Press, Oxford, 1984), pp. 208–220, and references therein.

    Google Scholar 

  20. E.L. Mehler, J. Chem. Phys. 67 (1977)2728 (part I).

    Google Scholar 

  21. Ibid. 74 (1981)6298 (part II).

    Google Scholar 

  22. M.P. Fälscher and E.L. Mehler, Int. J. Quant. Chem. 29 (1986)627.

    Google Scholar 

  23. E.L. Mehler, J. Amer. Chem. Soc. 102 (1980)4051.

    Google Scholar 

  24. M.P. Fälscher and E.L. Mehler, J. Mol. Struct. (THEOCHEM) 165 (1988)319.

    Google Scholar 

  25. M.P. Fälscher and E.L. Mehler, J. Comp. Chem. 12 (1991)811.

    Google Scholar 

  26. J.M. Norbeck and R. McWeeny, Chem. Phys. Lett. 34 (1975)206.

    Google Scholar 

  27. J.M. Parks and R.G. Parr, J. Chem. Phys. 28 (1958)335.

    Google Scholar 

  28. M. Klessinger and R. McWeeney, J. Chem. Phys. 42 (1965)3343.

    Google Scholar 

  29. R. McWeeny,Methods in Molecular Quantum Chemistry (Academic Press, London, 1989), chap. 14.

    Google Scholar 

  30. W.H. Adams, J. Chem. Phys. 34 (1961)89.

    Google Scholar 

  31. Ibid. 37 (1962)2009.

    Google Scholar 

  32. T.L. Gilbert, Phys. Rev. A6 (1972)580.

    Google Scholar 

  33. T.L. Gilbert, J. Chem. Phys. 60 (1974)3835.

    Google Scholar 

  34. O. Matsuoka, J. Chem. Phys. 66 (1977)1245.

    Google Scholar 

  35. K.R. Sundberg, J. Bicerano and W.N. Lipscomb, J. Chem. Phys. 71 (1979)1515.

    Google Scholar 

  36. H. Stoll and H. Preuss, Theor. Chim. Acta 46 (1977)11.

    Google Scholar 

  37. H. Stoll, G. Wagenblast and H. Preuss, ibid. 49 (1978)67.

    Google Scholar 

  38. P.O. Löwdin, Phys. Rev. 139 (1965)357.

    Google Scholar 

  39. A. Mazziotti, R.G. Parr and G. Simons, J. Chem. Phys. 59 (1973)939.

    Google Scholar 

  40. S. Huzinaga and A.A. Cantu, J. Chem. Phys. 55 (1971)5543.

    Google Scholar 

  41. A.B. Kunz, Phys. B6 (1973)247.

    Google Scholar 

  42. H. Schlosser, Chem. Phys. Lett. 23 (1973)545.

    Google Scholar 

  43. T.A. Koopmans, Physica 1 (1933)104.

    Google Scholar 

  44. E.L. Mehler, Int. J. Quant. Chem. S12 (1978)407.

    Google Scholar 

  45. S. Huzinaga, J. Chem. Phys. 42 (1965)1293.

    Google Scholar 

  46. T.H. Dunning, J. Chem. Phys. 53 (1970)2823.

    Google Scholar 

  47. D.E. Mann, P.A. Thrush, D.R. Lide, J.J. Ball and N. Acquida, J. Chem. Phys. 34 (1961)420.

    Google Scholar 

  48. K. Kitaura and K. Morokuma, Int. J. Quant. Chem. 10 (1976)325.

    Google Scholar 

  49. M. Dreyfus and A. Pullman, Theor. Chim. Acta 19 (1970)201.

    Google Scholar 

  50. P.A. Kollman and L.C. Allen, J. Chem. Phys. 52 (1970)5085.

    Google Scholar 

  51. K. Morokuma, J. Chem. Phys. 55 (1971)1236.

    Google Scholar 

  52. W.J. Hehre, R.F. Stewart and J.A. Pople, J. Chem. Phys. 51 (1969)2657.

    Google Scholar 

  53. P. Kollman, J. Amer. Chem. Soc. 99 (1977)4875.

    Google Scholar 

  54. H. Umeyama and K. Morokuma, ibid. 99 (1977)1316.

    Google Scholar 

  55. Z. Latajka and S. Seheiner, J. Mol. Struct. (THEOCHEM) 199 (1989)9.

    Google Scholar 

  56. J.R. Collins and G.A. Gallup, Chem. Phys. Lett. 123 (1986)56.

    Google Scholar 

  57. A. Vibol and I. Mayer, J. Mol. Struct. (THEOCHEM) 170 (1988)9.

    Google Scholar 

  58. S.F. Boys and F. Berardi, Mol. Phys. 19 (1970)558.

    Google Scholar 

  59. M. Gutowski, F.B. van Duineveldt, G. Chalasinski and L. Piela, Mol. Phys. 61 (1987)2331.

    Google Scholar 

  60. D.W. Schwenke and D.G. Truhlar, J. Chem. Phys. 82 (1985)2418.

    Google Scholar 

  61. B. Roos and P. Siegbahn, Theor. Chim. Acta 17 (1970)209.

    Google Scholar 

  62. A. Rahmouni, E. Kochanski, R. Wiest, P.E.S. Wormer and J. Langlet, J. Chem. Phys. 93 (1990)6648.

    Google Scholar 

  63. H. Saint-Martin, C. Medina-Llanos and I. Ortega-Blake, J. Chem. Phys. 93 (1990)6448.

    Google Scholar 

  64. M. Neumann, J. Chem. Phys. 82 (1985)5663.

    Google Scholar 

  65. O. Matsuoka, E. Clementi and M. Yoshimine, J. Chem. Phys. 64 (1976)1351.

    Google Scholar 

  66. A.D. Buckingham, in:Modelling Molecular Structures and Properties, ed. J.L. Rivail, (Elsevier, Amsterdam, 1990), pp. 17–26.

    Google Scholar 

  67. D. Hankins, J.W. Moskowitz and F.H. Stillinger, J. Chem. Phys. 53 (1970)4544.

    Google Scholar 

  68. J.S. Richardson and D.C. Richardson, in:Prediction of Protein Structure and the Principles of Protein Conformation, ed. G.D. Fasman (Plenum, New York, 1989), pp. 1–98.

    Google Scholar 

  69. P. Graf and E.L. Mehler, Int. J. Quant. Chem. QBS8 (1981)49.

    Google Scholar 

  70. L. Onsager, J. Amer. Chem. Soc. 58 (1936)1486.

    Google Scholar 

  71. E. Kochanski, Chem. Phys. Lett. 133 (1987)143.

    Google Scholar 

  72. W.J. Hehre, W.A. Lathan, R. Ditchfield, M.D. Newton and J.A. Pople, Quantum Chemistry Program Exchange, Program No. 236, University of Indiana, Bloomington, Indiana.

  73. A.R. Fersht, J.-P. Shi, J. Krull-Jones, D.M. Lowe, A.J. Wilkinson, D.M. Blow, P. Brick, P. Carter, M.M.Y. Waye and G. Winter, Nature 314(1985)235.

    PubMed  Google Scholar 

  74. A. J Russel and A.R. Fersht, Nature 328 (1987)496.

    PubMed  Google Scholar 

  75. S. Linse, C. Johanssen, P. Brodin, T. Grundström, T. Drakenberg and S. Frosen, Biochem. 30 (1991)154.

    Google Scholar 

  76. R.L. Cutler, A.M. Davies, S. Creighton, A. Warshel, G.R. Moore, M. Smith and A.G. Mauk, Biochem. 28 (1989)3188.

    Google Scholar 

  77. G.N.J. Port and A. Pullman, Int. J. Quant. Chem. S1 (1974)21.

    Google Scholar 

  78. F. Sussman and H. Weinstein, Proc. Nat. Acad. Sci. USA 86 (1989)7880.

    PubMed  Google Scholar 

  79. M. Fuelscher, Development and application of the nonorthogonal group function approximation: Program development and calculations on water polymers, ion pairs and stabilization of functional groups in proteins, Ph.D. Thesis, University of Basel, Basel, Switzerland (1988).

    Google Scholar 

  80. A. Warshel, Proc. Nat. Acad. Sci. USA 81 (1984)444.

    PubMed  Google Scholar 

  81. A. Warshel and S.T.Q. Russel, Rev. Biophys. 17 (1984)671.

    Google Scholar 

  82. M. Hodoscek, D. Kocjan and T. Solmajer, Croat. Chem. Acta 57 (1984)65.

    Google Scholar 

  83. S. Nakagawa and H. Umeyama, J. Theor. Biol. 96 (1982)473.

    PubMed  Google Scholar 

  84. B. Borstnik, D. Janezic and D. Hadzi, J. Mol. Struct. 138 (1986)341.

    Google Scholar 

  85. J.P. Dijkman, R. Osman and H. Weinstein, Int. J. Quant. Chem. 35 (1989)241.

    Google Scholar 

  86. S. Topiol, G. Mercier, R. Osman and H. Weinstein, J. Comp, Chem. 6 (1985)581.

    Google Scholar 

  87. S. Scheiner and E. A. Hillenbrand, Proc. Nat. Acad. Sci. USA 82 (1986)2741.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to Dr. Bess-Gene Holt, whose untimely death was a sad reminder to the author that our knowledge is still far from complete. Dr. Holt was a close friend whose insights and philosophy served as a strong guide to the development of the author's moral and philosophical views during his graduate student career at Iowa State University, Ames, Iowa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehler, E.L. Self-consistent, nonorthogonal group function approximation: An ab initio approach for modelling interacting fragments and environmental effects. J Math Chem 10, 57–91 (1992). https://doi.org/10.1007/BF01169171

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01169171

Keywords

Navigation