Skip to main content
Log in

Self-consistent embedded clusters: Building block equations for localized orthogonal orbitals

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In order to be able to study a large electronic system following a building block approach, in which smaller tractable subsystems are handled at a time rather than the system as a whole, equations are proposed in this paper whose solutions are variational orthogonal orbitals localized on the subsystems. The equations for a given subsystem correspond to a molecular cluster embedded in the field created by the rest of the system, and are coupled to the corresponding equations for all subsystems under consideration, so that they must be solved self-consistently. While the localized nature of the solutions makes the equations appropriate for use in conjunction with local basis sets in practical implementations without significant loss of precision due to truncation errors, their orthogonality properties allow for the use of the advantages of the theory of separability of McWeeny in order to calculate total energies and (generalized product) wave functions. Since the building block equations proposed involve inter-subsystem interactions very cumbersome to calculate, an approximation is proposed in order to make their application to actual problems feasible: the representation of the cumbersome interaction operators by ab initio model potentials which are obtained directly from them, without resorting to any parametrization procedure based on a reference. This ab initio model potential approximation has been found to provide considerable computational savings without significant loss of accuracy in frozen-core calculations on molecules and frozen-lattice calculations on imperfect crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Pisani, R. Dovesi and C. Roetti,Hartree-Fock Ab Initio Treatment of Crystalline Systems, Lecture Notes in Chemistry, Vol. 48 (Springer, Berlin, 1988).

    Google Scholar 

  2. See, for instance, J. Almlöf, K. Faegri, Jr. and K. Korsell, J. Comput. Chem. 3 (1982)385;

    Google Scholar 

  3. J. Almlöf and P.R. Taylor, in:Advanced Theories and Computational Approaches to the Electronic Structure of Molecules, ed. C.E. Dykstra (Reidel, Dordrecht, 1984), and references therein.

    Google Scholar 

  4. S.F. Boys, Rev. Mod. Phys. 32 (1960)296;

    Google Scholar 

  5. S.F. Boys and J.M. Foster, ibid. 32 (1960)300.

    Google Scholar 

  6. T.L. Gilbert, in:Molecular Orbitals in Chemistry, Physics, and Biology, ed. P.O. Löwdin and B. Pullman (Academic, New York, 1964), pp. 405–420.

    Google Scholar 

  7. T.L. Gilbert, Phys. Rev. A6 (1972)580; J. Chem. Phys. 60(1974)3835.

    Google Scholar 

  8. W.H. Adams, J. Chem. Phys. 34 (1961)89; 37(1962)2009; 42(1965)4030.

    Google Scholar 

  9. R. McWeeny, Proc. Roy. Soc. A253 (1959)242; Rev. Mod. Phys. 32(1960)335;

    Google Scholar 

  10. M. Kleiner and R. McWeeny, Chem. Phys. Lett. 19 (1973)476;

    Google Scholar 

  11. R. McWeeny, Methods of Molecular Quantum Mechanics (Academic Press, London, 1989), pp. 485–519.

    Google Scholar 

  12. S. Huzinaga and A.A. Cantu, J. Chem. Phys. 55 (1971)5543.

    Google Scholar 

  13. S. Huzinaga, D. McWilliams and A.A. Cantu, Adv. Quant. Chem. 7 (1973)187.

    Google Scholar 

  14. R.N. Dixon and I.L. Robertson,Theoretical Chemistry; Specialist Periodical Reports, Vol. 3 (The Chemical Society, London, 1978), p. 100; Mol. Phys. 37(1979)1223.

    Google Scholar 

  15. M. Krauss and W.J. Stevens, Ann. Rev. Phys. Chem. 35 (1984)357, and references therein.

    Google Scholar 

  16. G.B. Bachelet, D.R. Hamann and M. Schluter, Phys. Rev. B26 (1982)4199.

    Google Scholar 

  17. P.J. Hay and W.R. Wadt, J. Chem. Phys. 82 (1985)270; 299;

    Google Scholar 

  18. W.R. Wadt and P.J. Hay, ibid. 82 (1985)284.

    Google Scholar 

  19. L.F. Pacios and P.A. Christiansen, J. Chem. Phys. 82 (1985)2665;

    Google Scholar 

  20. M.M. Hurley, L.F. Pacios, P.A. Christiansen, R.B. Ross and W.C. Ermler, ibid. 84 (1986)6840;

    Google Scholar 

  21. L.A. LaJohn, P.A. Christiansen, R.B. Ross, T. Atashroo and W.C. Ermler, ibid. 83 (1987)2812;

    Google Scholar 

  22. R.B. Ross, J.M. Powers, T. Atashroo, W.C. Ermler, L.A. LaJohn and P.A. Christiansen, ibid. 93 (1990)6654.

    Google Scholar 

  23. M. Dolg, U. Wedig, H. Stoll and H. Preuss, J. Chem. Phys. 86 (1987)886; 2123.

    Google Scholar 

  24. L.G.M. Petterson, U. Wahlgren and O. Gropen, J. Chem. Phys. 86 (1987)2176,

    Google Scholar 

  25. Y. Sakai, E. Miyoshi, M. Klobukowwski and S. Huzinaga, J. Comput. Chem. 8 (1987)226; 256;

    Google Scholar 

  26. Y. Sakai and E. Miyoshi, J. Chem. Phys. 87 (1987)2885;

    Google Scholar 

  27. E. Miyoshi, Y. Sakai, A. Murakami, H. Iwaki, H. Terashina, T. Shoda and T. Kawaguchi, J. Chem. Phys. 89 (1988)4193.

    Google Scholar 

  28. S. Katsuki and S. Huzinaga, Chem. Phys. Lett. 147 (1988)597.

    Google Scholar 

  29. S. Huzinaga, J. Mol. Struct. (THEOCHEM) 80 (1991)51.

    Google Scholar 

  30. S. Huzinaga, L. Seijo, Z. Barandiarán and M. Klobukowski, J. Chem. Phys. 86 (1987)2132.

    Google Scholar 

  31. L. Seijo, Z. Barandiarán and S. Huzinaga, J. Chem. Phys. 91 (1989)7011.

    Google Scholar 

  32. Z. Barandiarán, L. Seijo and S. Huzinaga, J. Chem. Phys. 93 (1990)5843.

    Google Scholar 

  33. L. Seijo, Z. Barandiarán and S. Huzinaga, J. Chem. Phys. 94 (1991)3762,

    Google Scholar 

  34. J.A. Jafri and J.L. Whitten, J. Chem. Phys. 61 (1974)2116;

    Google Scholar 

  35. J.L. Whitten and T.A. Pakkanen, Phys. Rev. B21 (1980)4357;

    Google Scholar 

  36. J.L. Whitten, Phys. Rev. B24 (1981)1810.

    Google Scholar 

  37. N.W. Winter and R.M. Pitzer, in:Tunable Solid State Lasers, Springer Series of Optical Science, Vol. 47, ed. P. Hammerling (Springer, Berlin, 1985), pp. 164–171;

    Google Scholar 

  38. N.W. Winter, R.M. Pitzer and D.K. Temple, J. Chem. Phys. 86 (1987)3549;87(1987)1945;

    Google Scholar 

  39. N.W. Winter and R.M. Pitzer, J. Chem. Phys. 89 (1988)446.

    Google Scholar 

  40. Z. Barandiarán and L. Seijo, Z Chem. Phys. 89 (1988)5739.

    Google Scholar 

  41. Z. Barandiarán and L. Seijo, in:Structure, Interactions, and Reactivity, Vol. 3,Condensed Matter, ed. S. Fraga (Elsevier, Amsterdam), in press.

  42. J.M. Vail and R. Pandey, Mater. Res. Soc. Symp. Proc. 63 (1985)247.

    Google Scholar 

  43. A.B. Kunz and J.M. Vail, Phys. Rev. B38 (1988)1058;

    Google Scholar 

  44. A.B. Kunz, J. Meng and J.M. Vail, ibid. 38 (1988)1064.

    Google Scholar 

  45. J.H. Harding, A.H. Harker, P.B. Keegstra, R. Pandey, J.M. Vail and C. Woodward, Physica B131 (1985)151.

    Google Scholar 

  46. L.N. Kantorovich, J. Phys. C21 (1988)5041; 5057.

    Google Scholar 

  47. A.B. Kunz and D.L. Klein, Phys. Rev. B17 (1978)4614.

    Google Scholar 

  48. O. Matsuoka, J. Chem. Phys. 66 (1977)1245.

    Google Scholar 

  49. V. Fock, M. Wesselov and M. Petraschen, Zh. Eksp. Teor. Fiz. 10 (1940)723.

    Google Scholar 

  50. P.G. Lykos and R.G. Parr, J. Chem. Phys. 24 (1956)1166.

    Google Scholar 

  51. L. Szasz, Z. Naturforsch. A14 (1959)1014;

    Google Scholar 

  52. L. Szasz and G. McGinn, J. Chem. Phys. 45 (1966)2898.

    Google Scholar 

  53. J.D. Weeks and S.A. Rice, J. Chem. Phys. 49 (1968)2741.

    Google Scholar 

  54. G. Wannier, Phys. Rev. 52 (1937)191.

    Google Scholar 

  55. C. Edminston and K. Ruedenberg, Rev. Mod. Phys. 35 (1963)457.

    Google Scholar 

  56. R.D. Cowan and D.C. Griffin, J. Opt. Soc. Amer. 66 (1976)1010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seijo, L., Barandiarán, Z. Self-consistent embedded clusters: Building block equations for localized orthogonal orbitals. J Math Chem 10, 41–56 (1992). https://doi.org/10.1007/BF01169170

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01169170

Keywords

Navigation