Skip to main content
Log in

Microstructure and mechanical properties of RB-SiC/MoSi2 composite

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Microstructure, high temperature strength and oxidation behaviour of reaction bonded silicon carbide, RB-SiC/17 wt% MoSi2 composite prepared by infiltrating a porous RB-SiC bulk (after removal of free silicon) with molten MoSi2 were investigated. There was good bonding between the SiC and MoSi2 particle, without a significant reaction zone and microcracking caused by the thermal mismatch stresses. A thin (∼2 nm) layer, however, was observed at the SiC/MoSi2 interfaces. At room temperature, the composite exhibited a bending strength of 410 MPa, which is ∼20% loss in comparison to that of RB-SiC alone (containing ∼ 10 wt% free silicon). However, the composite strength increased to a maximum of 590 MPa in the temperature range 1100 and 1200° C and dropped to 460 MPa between 1200 to 1400° C, after which the strength remained constant. The passive oxidation of the composite in dry air in the temperature range 1300 to 1400° C was found to follow the parabolic rate law with the formation of a protective layer of cristobalite on the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. W. Forrest, P. Kennedy andJ. V. Shennan, “Special Ceramics 5” (British Ceramic Research Association, Stoke-on-Trent, 1972) p. 99.

    Google Scholar 

  2. J. N. Ness andT. F. Page,J. Mater. Sci. 21 (1986) 1377.

    Google Scholar 

  3. C. B. Lim andT. Iseki,Adv. Ceram. Mater. 3 (1988) 590.

    Google Scholar 

  4. Idem, J. Mater. Sci. 23 (1988) 3248.

    Google Scholar 

  5. J. B. Huffadine, “Special Ceramics” (Academic Press, New York, 1960) p. 228.

    Google Scholar 

  6. J. B. Berkowitz-Mattuck, M. Rossetti andD. W. Lee,Metall. Trans,1 (1970) 479.

    Google Scholar 

  7. J. Schlichting,High Temp.-High Pressures 10 (1978) 241.

    Google Scholar 

  8. N. G. Schrewelius, Brit. Pat. 1023155 (1966) from Chem Abs 65 (1966) 469.

    Google Scholar 

  9. Bulten Kanthal AB, Ger. Pat. 2656072 (1977) from Chem Abs88 (1978) 10832.

    Google Scholar 

  10. Carborundum Co., Brit. Pat. 936118 (1963) from Chem Abs59 (1963) 13675.

    Google Scholar 

  11. F. D. Gac andJ. J. Petrovic,J. Amer. Ceram. Soc. 68 (1985) 279.

    Google Scholar 

  12. D. H. Carter andG. F. Hurley,ibid. 70 (1987) 79.

    Google Scholar 

  13. T. P. Chow, A. J. Steckl andD. M. Brown,J. Appl. Phys. 52 (1981) 6331.

    Google Scholar 

  14. S. Prochazka, in “Silicon Carbide-1973”, edited by R. C. Marshall, J. W. Faust, Jr. and C. E. Ryan (University of South Carolina Press, Columbia, 1974) p. 394.

    Google Scholar 

  15. J. M. Guiot,Silicates Ind. 31 (1966) 457.

    Google Scholar 

  16. R. W. Davidge andT. J. Green,J. Mater. Sci. 3 (1968) 629.

    Google Scholar 

  17. R. W. Davidge, “Mechanical Behaviour of Ceramics” (Cambridge University Press, London, 1979) p. 80.

    Google Scholar 

  18. F. F. Lange,J. Amer. Ceram. Soc. 56 (1973) 445.

    Google Scholar 

  19. F. F. Lange, in “Fracture Mechanics of Ceramics” Vol. 2, edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum, New York 1974) p. 599.

    Google Scholar 

  20. D. C. Phillips, in “Handbook of Composite, Vol. 4”, edited by A. Kelly and S. T. Mileiko (Elsevier, Amsterdam, 1983) p. 373.

    Google Scholar 

  21. D. F. Carroll andR. E. Tressler,J. Amer. Ceram. Soc. 68 (1985) 143.

    Google Scholar 

  22. N. Claussen, K. L. Weisskopf andM. Ruhle, in “Fracture Mechanics of Ceramics, Vol. 7”, edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1986) p. 75.

    Google Scholar 

  23. W. B. Hillig, R. L. Mehan, C. R. Morelock, V. J. Decarlo andW. Laskow,Amer. Ceram. Soc. Bull. 54 (1975) 1054.

    Google Scholar 

  24. S. C. Singhal, in “Ceramics for High-Performance Applications”, edited by J. J. Burke, A. E. Garum and R. Nathankatzo (Brook Hill, Massachusetts, 1974) p. 533.

    Google Scholar 

  25. J. Schlichting,Ber. Dt. Keram. Ges. 56 (8) (1979) 196.

    Google Scholar 

  26. J. Schlichting andJ. Kriegesmann,ibid. 56 (1979) 72.

    Google Scholar 

  27. U. Ernstberger, H. Cohrt, F. Porz andF. Thumhlef,cfi/Ber. DKG. (Ceramic forum international Berichte der Deutschen keramischen Geselschaft.)60 (1983) 167.

    Google Scholar 

  28. V. I. Zmii, L. F. Verkhorobin, Y. N. Gontarenko andV. P. Podtykan,Vysoko Temp. Pokrytiya,Tr. Seminara, Leningrad 1965 (pub. 1967) 209.

  29. J. B. Berkowitz, J. T. Larson, R. F. Quigley andW. Christiansen,NASA Tech. Publ. Announcements 2 (1962) 682.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, C.B., Yano, T. & Iseki, T. Microstructure and mechanical properties of RB-SiC/MoSi2 composite. J Mater Sci 24, 4144–4151 (1989). https://doi.org/10.1007/BF01168987

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01168987

Keywords

Navigation