Skip to main content
Log in

Microdamage analysis of fibrous composite monolayers under tensile stress

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The quasi-static deformation and fracture modes of several types of fibrous composite materials are studied from a fundamental viewpoint using a new experimental approach. Microcomposite monolayers, consisting of single fibres accurately positioned into a thin poly-meric matrix, were manufactured using a specially developed technique, and tested for strength by means of a custom-made miniature tensile testing machine. The materials used were E-glass, and Kevlar 29, Kevlar 49 and Kevlar 149 para-aramid fibres, and a room-temperature curing epoxy resin. The tensile testing machine was fitted to the stage of a polarized light stereozoom microscope and the fracture process was recorded both via a standard 35 mm camera and a colour video camera. The fibre content of the first generation of micro-composite monolayers used in this work was low (<0.025) but definite effects on the modulus and strength were obtained as the experimental data followed the rule-of-mixtures quite accurately in most cases. The failure process was different in each type of composite and current statistical models for strength are unable to account for the modes of failure observed in some of the systems studied. The experimental approach proposed is potentially useful in the study of the effects of interface chemistry modifications, fibre-fibre interactions, matrix toughness modification, misalignment effects, and more, on the deformation and failure micromechanics of composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. D. Wagner, in “Application of Fracture Mechanics to Composite Materials”, edited by R. B. Pipes and K. Friedrich (Elsevier Science, 1988) pp. 39–77.

  2. L. W. Steenbakkers andH. D. Wagner, Polymeric Composites Laboratory, Materials Research Department, The Weizmann Institute of Science Report PCL-88-02 (1988).

  3. S. L. Phoenix, P. Schwartz andH. H. Robinson IV,Compos. Sci. Technol. 32 (1988) 81.

    Google Scholar 

  4. H. E. Daniels,Proc. Roy. Soc. Land. A183, (1945) 404.

    Google Scholar 

  5. B. D. Coleman,J. Mech. Phys. Solids 7 (1959) 66.

    Google Scholar 

  6. D. E. Gucer andJ. Gurland,ibid. 10 (1962) 365.

    Google Scholar 

  7. P. M. Scop andA. S. Argon,J. Compes. Mater,1 (1967) 92.

    Google Scholar 

  8. B. W. Rosen,AIAA J. 2 (1964) 1985.

    Google Scholar 

  9. C. Zweben,ibid. 6 (1968) 2325.

    Google Scholar 

  10. P. M. Scop andA. S. Argon,J. Compos Mater. 3 (1969) 30.

    Google Scholar 

  11. C. Zweben andB. W. Rosen,J. Mech. Phys. Solids 18 (1970) 189.

    Google Scholar 

  12. A. S. Argon, in “Composite Materials”, Vol. 5, edited by L. J. Broutman (Academic, New York, 1974) pp. 154–90.

    Google Scholar 

  13. R. L. Smith, S. L. Phoenix, M. Greenfield, R. B. Henstenburg andR. E. Pitt,Proc. Roy. Soc. Lond. A388 (1983) 353.

    Google Scholar 

  14. W. Weibull,Handlingar (Royal Swedish Academy of Energy Sciences) 151 (1951).

  15. H. D. Wagner, S. L. Phoenix andP. Schwartz,J. Compos. Mater. 18 (1984) 312.

    Google Scholar 

  16. H. D. Wagner, P. Schwartz andS. L. Phoenix,J. Mater. Sci. 21 (1986) 1868.

    Google Scholar 

  17. J. Gutans andV. Tamuzs,Mech. Compos. Mater. 20(6) (1984) 1107 (in Russian).

    Google Scholar 

  18. A. S. Watson andR. L. Smith,J. Mater. Sci. 20 (1985) 3260.

    Google Scholar 

  19. H. D. Wagner, (1988)J. Macromol. Sci.-Phys. (1989) in press.

  20. P. Ray andB. K. Chakrabarti,J. Phys. C Solid State Phys. 18 (1985) L185.

    Google Scholar 

  21. Idem, Solid State Commun. 53(5) (1985) 477.

    Google Scholar 

  22. S. L. Phoenix andL.-J. Tierney,Eng. Fract. Mech. 18 (1983) 193.

    Google Scholar 

  23. C. C. Kuo andS. L. Phoenix, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, Report MSD-83-02 (1983).

  24. D. Sornette,J. Phys. France 49 (1988) 889.

    Google Scholar 

  25. S. L. Phoenix, Proceedings 9th US National Congress of Applied Mechanics Book No. H0028, (The American Society of Mechanical Engineers, New York, 1982) p. 219.

    Google Scholar 

  26. J. M. Hedgepeth, NASA TN D-882 (1961).

  27. J. M. Hedgepeth andP. Van Dyke,J. Compos. Mater. 1 (1967) 294.

    Google Scholar 

  28. W. B. Fichter, NASA TN D-5453 (1969).

  29. D. G. Harlow andS. L. Phoenix,J. Compos. Mater. 12 (1978) 195.

    Google Scholar 

  30. Idem, ibid. 12 (1978) 314.

    Google Scholar 

  31. H. Fukuda andK. Kawata,Fibre Sci. Technol. 9 (1976) 189.203.

    Google Scholar 

  32. E. D. Reedy Jr,J. Compos. Mater. 18 (1984) 595.

    Google Scholar 

  33. S. B. Batdorf andR. W. C. Ko,AIAA J. 23 (1985) 1749.

    Google Scholar 

  34. M. G. Bader andM. J. Pitkethly, in “Mechanical Characterisation of Fibre Composite Materials, edited by R. Pyrz (Aalburg University, Denmark, 1986).

    Google Scholar 

  35. L. C. Wolstenholme andR. L. Smith, Technical Report No. 62, Department of Mathematics, University of Surrey, Guilford, (1988).

    Google Scholar 

  36. D. M. Schuster andE. Scala,Trans. Met. Soc. AIME 230 (1964) 1635.

    Google Scholar 

  37. W. R. Tyson andG. I. Davies,Brit. J. Appl. Phys. 16 (1965) 199.

    Google Scholar 

  38. D. Pih andD. R. Sutliff, AFML-TR-68-380 (1968).

  39. T. F. Maclaughlin,J. Compos. Mater. 2 (1968) 44.

    Google Scholar 

  40. R. B. McKee Jr andG. Sines,J. Elastoplastics 1 (1969) 185.

    Google Scholar 

  41. E. Friedman, Proceedings of the 22nd Conference SPI Reinforced Plastics Division, Section 4-A (1967).

  42. A. E. Armenakas, S. K. Garg, C. A. Sciammarella andV. Svalbonas,Exp. Mech. 12 (1972) 1.

    Google Scholar 

  43. J. Mullin, J. M. Berry andA. Gatti,J. Compos. Mater. 2 (1968) 82.

    Google Scholar 

  44. W. A. Fraser, F. H. Ancker, A. T. Dibenedetto andB. Elbirli,Polym. Compos. 4(4) (1983) 238.

    Google Scholar 

  45. L. T. Drzal, M. J. Rich, M. F. Koenig andP. F. Lloyd,J. Adhes. 16 (1983) 133.

    Google Scholar 

  46. D. Jacques andJ. P. Favre, Proceedings of the 6th International Conference on Composite Materials (ICCM-6) and 2nd European Conference Composite Materials (ECCM- 2) Vol. 5, edited by F. L. Matthews, N. C. R. Buskell, J. M. Hodgkinson, J. Merton, 20–24 July 1987, (Elsevier Applied Science, London, 1987) pp. 471–80.

    Google Scholar 

  47. W. D. Bascom, R. M. Jensen andL. W. Cordner,ibid. pp. 424–38.

    Google Scholar 

  48. M. R. Piggott, A. Sanadi, P. S. Chua, D. Andison, in “Composite Interfaces” edited by H. Ishida and J. L. Koenig (North-Holland, New York, 1986) p. 109.

    Google Scholar 

  49. L. DiLandro, A. T. Dibenedetto andJ. Groeger,Polym. Compos. 9(3) (1988) 209.

    Google Scholar 

  50. L. W. Steenbakkers andH. D. Wagner,J. Mater. Sci. Lett. 7 (1988) 1209.

    Google Scholar 

  51. A. S. Taylor andH. D. Wagner, (1989) submitted.

  52. P. G. Riewald, A. K. Dhingra, T. S. Chern, Proceedings of the 6th International Conference on Composite Materials (ICMM-6) and 2nd European Conference on Composite Materials (ECCM-2), Vol. 5, edited by F. L. Matthews, N. C. R. Buskell, J. M. Hodgkinson, J. Merton, 20–24 July 1987 (Elsevier Applied Science, London, 1987) pp. 362–70.

    Google Scholar 

  53. R. L. Smith, Paper presented to the IUTAM Symposium on Probabilistic Methods in the Mechanics of Solids and Structures, Stockholm, Sweden, June 19–21 (1984).

  54. R. L. Smith,Proc. Roy. Soc. Lond. A372 (1980) 539.

    Google Scholar 

  55. S. B. Batdorf,J. Reinf. Plast. Compos. 1 (1982) 153.

    Google Scholar 

  56. P. W. Manders, M. G. Bader andT.-W. Chou,Fibre Sci. Technol. 17 (1982) 183.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Incumbent of the Jacob and Alphonse Laniado Career Development Chair.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, H.D., Steenbakkers, L.W. Microdamage analysis of fibrous composite monolayers under tensile stress. J Mater Sci 24, 3956–3975 (1989). https://doi.org/10.1007/BF01168959

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01168959

Keywords

Navigation