Chemistry of Heterocyclic Compounds

, Volume 1, Issue 1, pp 8–14 | Cite as

Transmission of inductive effect and polar resonance effect through the benzene and the furan ring in PMR spectra

  • R. A. Gavar
  • Ya. P. Stradyn


Assuming the independence and additivity of the inductive and polar resonance effects, experimental data for chemical shifts in proton magnetic resonance (PMR) spectra of mono and disubstituted benzene and furan derivatives are used to calculate transmission coefficients for the inductive and polar resonance effects due to any substituent for a proton in the 2, 3, or 4 position in the ring. Values ofρ* andρc are tabulated. With benzene compounds transmission of the polar resonance effect decreases on passing from the p and o to the m position. The coefficient of transmission of the inductive effect to a proton in the m or p position is negligible.

With furan compounds the values of the coefficientρc for 2, 5 and 2,4 ring positions are close to the corresponding values for benzene compounds. In the furan ring a considerable part of the polar resonance is transmitted through the heteroatom. Theρ* coefficients are appreciably greater with furan than with benzene compounds, because the ring carbon atoms screen the proton less from the substituent. Most of the inductive effect from the 2 to the 5 position in the furan ring is direct (transmitted through space).


Benzene Organic Chemistry Proton Magnetic Resonance Carbon Atom Chemical Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. W. Taft, Space Effects in Organic Chemistry [Russian translation], Ch, 13, IL, Moscow, 1960.Google Scholar
  2. 2.
    R. W. Taft, Jr., J. Phys. Chem., vol. 64, p. 1805, 1961.Google Scholar
  3. 3.
    Y. Yukava, Y. Tsuno, Bul. Jap., vol. 32, pp. 965, 971, 1959.Google Scholar
  4. 4.
    V. A. Pal'm, A. V. Tuulmets, Reaktsionnaya sposobnost organicheskikh soedinenii, Tartu, vol. 1, no. 1, p. 33, 1964.Google Scholar
  5. 5.
    R. W. Taft, Jr., J. Am. Chem. Soc., vol. 79, p. 1045, 1957.Google Scholar
  6. 6.
    P. L. Corio, B. P. Dailey, J. Am. Chem. Soc., vol. 78, p. 3043, 1956.Google Scholar
  7. 7.
    P. Diehl, Helv. Chim. Acta, vol. 44, p. 829, 1961.Google Scholar
  8. 8.
    S. Gronowitz, G. Sörling, B. Gestblom, R. A. Hoffman, Arkiv för Kemi, vol. 19, p. 483, 1962.Google Scholar
  9. 9.
    A. A. Bother-By, R. E. Glick, J. Chem. Phys., vol. 26, p. 1651, 1957.Google Scholar
  10. 10.
    Ya. P. Stradyn, S. A. Giller, Yu. K. Yur'ev, DAN, vol. 129, p. 816, 1959.Google Scholar
  11. 11.
    J. Stradinš, S. Hillers, Tetrah., Supplement (International Symposium on Nitrocompounds, Warsaw, 1963), p. 409, 1964.Google Scholar
  12. 12.
    D. S. Sappenfield, M. Kreevoy, Tetrah., vol. 19, suppl. 2, p. 157, 1963.Google Scholar
  13. 13.
    V. A. Pal'm, A. V. Tuulmets, Reaktsionnaya sposobnost organicheskikh soedinenii, Tartu, vol. 1, no. 2, p. 44, 1964.Google Scholar
  14. 14.
    B. Bak, D. Christensen, J. Mol. Spectr., vol. 9, p. 124, 1962.Google Scholar

Copyright information

© The Faraday Press, Inc. 1965

Authors and Affiliations

  • R. A. Gavar
    • 1
  • Ya. P. Stradyn
    • 1
  1. 1.Institute of Organic Synthesis AS Latvian SSRRiga

Personalised recommendations