manuscripta mathematica

, Volume 63, Issue 2, pp 215–231 | Cite as

Local semianalytic geometry

  • Robert O. Robson


This paper treats the theory of semianalytic function germs over real closed fields more general than ℝ. An ordered field is microbial if it has a non-zero element whose powers converge to zero. The fields we treat are direct limits of countable microbial subfields. We define local rings of analytic function germs algebraically and use the Weierstrass preparation theory to prove an Artin-Lang property. We end by relating seminash functions to abstract semialgebraic functions on the real spectrum of the local rings.


Analytic Function Number Theory Algebraic Geometry Topological Group Local Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Abhyankar:Local Analytic Geometry. Academic Press, New York (1964)Google Scholar
  2. [2]
    N. Alling:Foundations of Analysis over Surreal Number Fields, to appear, North Holland (1987)Google Scholar
  3. [3]
    N. Ailing: The ξ-Topology on ηξ with Applications to Real Algebraic Geometry, Math Reports Acad. Sci. Canada 3 (1984) 145–150Google Scholar
  4. [4]
    E. Becker:On the Real Spectrum of a Ring and its Applications to Semialgebraic Geometry, A.M.S. Bulletin 15 (1986) 19–60Google Scholar
  5. [5]
    Coste & Coste-Roy:Topologies for Real Algebraic Geometry, in Topos Theoretic Methods in Geometry (ed. A Koch) Various Publ. Series 30, Aarhus Universitet (1979)Google Scholar
  6. [6]
    H. Delfs:Kohomologie Affiner Semialgebraische Räume. Diss., Univ. Regensburg, Regensburg, West Germany (1980)Google Scholar
  7. [7]
    H. Delfs:The Homotopy Axiom in Semialgebraic Geometry. J. Reine u. Angew. Math. 355 (1985) 108–128Google Scholar
  8. [8]
    Dubois & Bukowski:Real Commutative Algebra II, Rev. Mat. Hisp. Amer. (4) 39 (1979) 149–161Google Scholar
  9. [9]
    T. Y. Lam:Orderings, Valuations, and Quadratic Forms, CBMS Regional Conf. Series in Math 52, A.M.S., Providence, R.I.Google Scholar
  10. [10]
    J. Merrien:Faisceaux analytiques semi-cohérents et fonctions différentiates. Thèse, Université de Rennes I (1980)Google Scholar
  11. [11]
    M. Nagata:Local Rings, Interscience, New York (1962)Google Scholar
  12. [12]
    S. Prieß-Crampe,Angeordnete Strukturen: Gruppen. Körper, projektive Ebenen. Ergebnisse der Mathematik 98, Springer Verlag, Berlin Heidelberg Tokyo New York (1983)Google Scholar
  13. [13]
    R. Robson,Spectra and Model Theory, submitted to J. Pure and Applied Algebra (1987)Google Scholar
  14. [14]
    M-F, Roy:Faisceau Structural sur le Spectre Reel et Fonctions de Nash, Springer Lecture Notes in Math 959 (1982) 406–432Google Scholar
  15. [15]
    N. Schwartz:Real Closed Spaces, Hablitationsschrift, München (1984)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Robert O. Robson
    • 1
  1. 1.Department of MathematicsOregon State UniversityCorvallisUSA

Personalised recommendations