Skip to main content
Log in

Measurement of the activity coefficient of aqueous NaHS to 80°C and 0.2m in the system NaHS−H2S−H2O

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Values for the mean stoichiometric activity coefficient of NaHS in the system NaHS−H2S−H2O are presented from 12 to 83°C for NaHS concentrations up to 0.2m and for H2S fugacities up to 1 atm. The measurements were made potentiometrically using a novel approach employing three commercially available specific ion electrodes (Na+ glass, H+ glass, and Ag2S) combined to form two cells without liquid junction. The results are described by the equation

t(°C)

D

B°

ΔB

10

0.223

0.075

0.442

25

0.151

0.006

0.248

80

0.024

0.326

0.180

Where γ *± is the mean activity coefficient relative to a standard state in which γ *± 1 asm NaHS→0 and\(m_{H_2 S} \to 0\). As expressed by this equation, an increase in the fugacity (or activity) of H2S causes the activity coefficient of NaHS to increase at constantT, P, andm NaHS, the effect becoming more pronounced at lower temperatures. It is suggested that H2S causes the solvent molecules to adopt a quasi-clathrate structure producing partial deslvation and destabilization of Na+ and HS ions. Hydrogen sulfide is known to form a stable clathrate compound just above 0°C when\(P_{H_2 S} = 1 atm\). The bisulfide ion appears to be a structure promotor based upon the value of the NaHS activity coefficient relative to those of other proton-accepting anions such as OH, HCO in3 , and acetate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. P. Stephens and J. W. Cobble,Inorg. Chem. 10, 619 (1971).

    Google Scholar 

  2. R. H. Dinius and L. C. Redding, Completion Report for Office of Water Resources Research Project A-018-ALA (1972).

  3. E. Schmidt and E. Pungor,Proc. Sec. Conf. Appl. Phys. Chem., Veszprem 1, 615 (1971).

    Google Scholar 

  4. W. Giggenbach,Inorg. Chem. 10, 1333 (1971).

    Google Scholar 

  5. A. L. Hammond,Science 139, 128 (1975).

    Google Scholar 

  6. W. P. Bebbington and V. R. Thayer,Chem. Eng. Prog. 55, 70 (1959).

    Google Scholar 

  7. H. L. Barnes and G. K. Czamanske, inGeochemistry of Hydrothermal Ore Deposits, H. L. Barnes, ed. (Holt, Rinehart and Winston, New York, 1967), Chap. 8.

    Google Scholar 

  8. M. B. Goldhaber and I. R. Kaplan, inThe Sea, Vol. V, E. D. Goldberg, ed. (Wiley-Interscience, New York, 1974), Chap. 17.

    Google Scholar 

  9. H. S. Harned and B. B. Owen,The Physical Chemistry of Electrolytic Solutions, 3rd ed. (Reinhold, New York, 1958), p. 431.

    Google Scholar 

  10. H. S. Harned and B. B. Owen,The Physical Chemistry of Electrolytic Solutions, 3rd ed. (Reinhold, New York, 1958), p. 669.

    Google Scholar 

  11. G. N. Lewis and M. Randall,Thermodynamics, 2nd ed., revised by K. S. Pitzer and L. Brewer. (McGraw-Hill, New York, 1961), p. 552.

    Google Scholar 

  12. K. Y. Chen and J. C. Morris,Environ. Sci. Tech. 6, 537 (1972).

    Google Scholar 

  13. G. Schwartzenbach and A. Fischer,Helv. Chim. Acta 169, 1365 (1960).

    Google Scholar 

  14. A. Teder,Ark. Kemi 30, 379 (1968).

    Google Scholar 

  15. A. Teder,Ark. Kemi 31, 173 (1969).

    Google Scholar 

  16. W. E. Morf, G. Kahr, and V. Simon,Anal. Chem. 46, 1538 (1974).

    Google Scholar 

  17. F. L. Herr, Jr., Ph. D. Thesis, University of Maryland, 1975.

  18. E. A. Guggenheim,Philos. Mag. 19, 588 (1935);22, 322 (1936).

    Google Scholar 

  19. J. I. Padova, inModern Aspects of Electrochemistry, Vol. 7, B. E. Conway and J. O'M. Bockris, eds. (Plenum Press, New York, 1972), p. 1.

    Google Scholar 

  20. H. P. Bennetto, D. Feakins, and D. J. Turner,J. Chem. Soc. (A), 714 (1966).

  21. H. P. Bennetto, D. Feakins, and K. G. Lawrence,J. Chem. Soc. (A), 1493 (1968).

  22. E. C. W. Clarke and D. N. Glew,Can. J. Chem. 49, 691 (1971).

    Google Scholar 

  23. G. N. Lewis and M. Randall,Thermodynamics, 2nd ed., revised by K. S. Pitzer and L. Brewer (McGraw-Hill, New York, 1961), p. 381.

    Google Scholar 

  24. H. S. Harned and B. B. Owen,The Physical Chemistry of Electrolytic Solutions, 3rd ed. (Reinhold, New York, 1958), p. 709.

    Google Scholar 

  25. R. A. Robinson and H. S. Harned,Chem. Rev. 28, 419 (1941).

    Google Scholar 

  26. R. W. Gurney,Ionic Processes in Solution (McGraw-Hill, New York, 1973), p. 259.

    Google Scholar 

  27. H. S. Frank and W. Y. Wen,Disc. Faraday Soc. 24, 133 (1957).

    Google Scholar 

  28. F. J. Millero, inWater and Aqueous Solutions: Structure, Thermodynamics, and Transport Properties, R. A. Horne, ed. (Wiley, New York, 1972), Chap. 13, p. 519.

    Google Scholar 

  29. G. R. Choppin and K. Buijs,J. Chem. Phys. 39, 2035 (1963).

    Google Scholar 

  30. O. Y. Samoilov, inWater and Aqueous Solutions: Structure, Thermodynamics, and Transport Properties, R. A. Horne, ed. (Wiley, New York, 1972), Chap. 14, p. 597.

    Google Scholar 

  31. H. S. Frank and M. W. Evans,J. Chem. Phys. 13, 507 (1945).

    Google Scholar 

  32. H. S. Frank and M. Tsao,Annu. Rev. Phys. Chem. 5, 43 (1954).

    Google Scholar 

  33. J. L. Kavanau,Water and Solute-Water Interactions (Holden-Day, New York, (1964).

    Google Scholar 

  34. B. G. Cox and A. J. Parker,J. Am. Chem. Soc. 95, 6879 (1973).

    Google Scholar 

  35. G. Scatchard,Chem. Rev. 19, 309 (1936).

    Google Scholar 

  36. G. N. Lewis and M. Randall,Thermodynamics, 2nd ed., revised by K. S. Pitzer and L. Brewer (McGraw-Hill, New York, 1961), p. 378.

    Google Scholar 

  37. D. W. Davidson, inWater: A Comprehensive Treatise, Vol. 2, F. Franks, ed. (Plenum, New York, 1973), Chap. 3, p. 115.

    Google Scholar 

  38. H. S. Frank and A. S. Quist,J. Chem. Phys. 34, 604 (1961).

    Google Scholar 

  39. D. N. Glew, H. D. Mak, and N. S. Rath, inHydrogen-Bonded Solvent Systems, A. K. Covington and P. Jones, eds. (Taylor and Francis, Ltd., London, 1968).

    Google Scholar 

  40. D. M. Mohilner and H. Nakadomari,J. Electroanal. Chem. 65, 843 (1975).

    Google Scholar 

  41. J. A. Murphy and G. L. Gaines,J. Chem. Eng. Data 19, 359 (1974).

    Google Scholar 

  42. R. A. Robinson and R. H. Stokes,Electrolytic Solutions, 2nd ed. (Butterworths, London, 1962), p. 492.

    Google Scholar 

  43. A. C. Walker, U. B. Bray, and J. Johnston,J. Am. Chem. Soc. 49, 1235 (1927).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herr, F.L., Helz, G.R. Measurement of the activity coefficient of aqueous NaHS to 80°C and 0.2m in the system NaHS−H2S−H2O. J Solution Chem 5, 833–852 (1976). https://doi.org/10.1007/BF01167238

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01167238

Key words

Navigation