Biotechnology Letters

, Volume 7, Issue 6, pp 389–394 | Cite as

Silver toxicity to ferrous iron and pyrite oxidation and its alleviation by yeast extract in cultures ofThiobacillusferrooxidans

  • Olli H. Tuovinen
  • Jaakko Puhakka
  • Paula Hiltunen
  • Katherine M. Dolan


Ferrous-ion oxidation byThiobacillusferrooxidans was inhibited by 10−6 M Ag+ while a slight inhibition of growth was apparent with 10−7 M Ag+. The threshold toxic concentration was the seme for four different test strains. While prolonged lag phases resulted from culture exposure to Ag+, Fe2+ oxidation rates after the onset of growth showed little variation under these conditions. Yeast extract (0.02%) partially alleviated the toxicity of silver-ion by reducing the lag periods. Pyrite oxidation byT.ferrooxidans and mixed cultures of acidophiles was tested at 8.3×10−7 to 8.3×10−5 M Ag+. Strong inhibition was apparent at 8.3×10−5 M Ag+ and little to no inhibition was observed at 8.3×10−7 M Ag+.


Iron Toxicity Pyrite Yeast Extract Oxidation Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Charley, R.C., and Bull, A.T. (1979).Arch. Microbiol. 123, 239–244.Google Scholar
  2. Dutrizac, J.E., and Kaiman, S. (1976).Can. Mineral. 14, 151–158.Google Scholar
  3. Hoffman, L.E., and Hendrix, J.L. (1976).Biotechnol. Bioeng. 18, 1161–1165.Google Scholar
  4. Lawrence, R.W., and Bruynesteyn, A. (1983).CIM Bull. 76, 107–110.Google Scholar
  5. Lawrence, R.W., and Gunn, J.D. (1985). InFrontier Technology in Mineral Processing, J.F. Spisak and G.V. Jergensen eds., pp. 13–17, New York: Society of Mining Engineers of AIME.Google Scholar
  6. Lawrence, R.W., Vizsolyi, A. and Vos, R.J. (1985). Preprint, 114th Annual Meeting of AIME, New York.Google Scholar
  7. Martin, P.A.W., Dugan, P.R., and Tuovinen, O.H. (1981).Can. J. Microbiol. 27, 850–853.Google Scholar
  8. Martin, P.A.W., Dugan, P.R., and Tuovinen, O.H. (1983).Eur. J. Appl. Microbiol. Biotechnol. 18, 392–395.Google Scholar
  9. McElroy, R.O., and Duncan, D.W. (1974). Canadian Patent 3,856,913.Google Scholar
  10. Miller, J.D., McDonough, P.J., and Portillo, H.Q. (1981). InProcess and Fundamental Considerations of Selected Hydrometallurgical Systems, M.C. Kuhn, ed., pp. 327–338, New York: Society of Mining Engineers of AIME.Google Scholar
  11. Miller, J.D., and Portillo, H.Q. (1981). InDevelopments in Mineral Processing, Proceedings of XIII International Mineral Processing Congress (Warsaw, Poland, 1979),Part A, J. Laskowski, ed., pp. 851–898, Amsterdam: Elsevier.Google Scholar
  12. Norris, P.R., and Kelly, D.P. (1978). InMetallurgical Applications of Bacterial Leaching and Related Microbiological Phenomena, L.E. Murr, A.E. Torma, and J.A. Brierley, eds., pp. 83–101, New York: Academic Press.Google Scholar
  13. Pooley, F.D. (1982).Nature (London) 296, 642–643.Google Scholar
  14. Roy S.S.M., and Mishra, A.K. (1984).Curr. Microbiol. 11, 1–6.Google Scholar
  15. Silver, M., and Dinardo, O. (1981).Appl. Environ. Microbiol. 41, 1301–1309.Google Scholar
  16. Silver, S. (1983). InBiomineralization and Biological Metal Accumulation, P. Westbroek and E.W. de Jong, eds., pp. 439–457, Dordrecht: D. Reidel Publ. Co.Google Scholar
  17. Snell, G.J., and Sze, M.C. (1977).Eng. Min. J. 178, 100–105.Google Scholar
  18. Sugio, T., Tano, T., and Imai, K. (1981).Agric. Biol. Chem. 45, 2037–2051.Google Scholar
  19. Sugio, T., Kougami, T., Tano, T., and Imai, K. (1982).Agric. Biol. Chem. 46, 2919–2924.Google Scholar

Copyright information

© Kluwer Academic Publishers 1985

Authors and Affiliations

  • Olli H. Tuovinen
    • 1
  • Jaakko Puhakka
    • 2
  • Paula Hiltunen
    • 2
  • Katherine M. Dolan
    • 1
  1. 1.Department of MicrobiologyThe Ohio State UniversityColumbusUSA
  2. 2.Department of MicrobiologyUniversity of HelsinkiHelsinki 71Finland

Personalised recommendations