Skip to main content
Log in

X-ray crystal structures of Ru3(μ-H)(μ-C,N-C5H4N)(CO)10-n (PiPr3) n ,n=0,1: A A case of the hydride following the Phosphine?

  • Articles
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The reaction ofRu3(μ-H)(μ-C,N-C5H4N)(CO)10 (1) with Pt(PiPr3)(nb)2 {nb = bicyclo-[2.2.1]hept-2-ene} does not afford any Ru-Pt mixed metal clusters, but gives instead the mono-substituted phosphine derivative Ru3(μ-H) (μ-C,N-C5H4N)(CO)9(PiPr3) (2) as the sole isolable product. Single crystal X-ray studies have been carriedout on 1 and 2. Crystal data for 1: monoclinic, space group P21/c,a = 16.9637(10) A,b = 7.6632(5) Á,c = 17.4058(11) Á, β = 117.214(5)°,V = 2009.0(2) Á3,R(R w) = 0.022 (0.034) for 3090 independent absorption corrected data. Crystal data for 2: triclinic, space group PĪ,a = 9.3389(5) Á,b = 11.4376(6) Á,c = 15.1781(8) Á,α = 76.454(4),β = 79.900(5),γ = 67.428(5)°,V = 1448.8(2) Á3 R(R w ) = 0.024 (0.034) for 4564 independent absorption corrected data. In cluster 1 the Ru-Ru bonds are in the range 2.8462(4)-2.8986(4) Á. The hydride andσ-pyridyl ligand bridge the same Ru-Ru vector, and the Ru(μ-H) bridge is symmetric, with Ru-H = 1.78(4) and 1.77(4) Á. In cluster 2 the Ru-Ru distances show a greater ranger 2.7267(3)-3.0604(3) Á. The phosphine ligand is bonded to the Ru atom which is not involved in theσ-pyridyl bridge. In contrast to 1, the hydride andσ-pyridyl ligands in 2 bridge different Ru-Ru vectors and the resultant Ru(μ-H)Ru bridge is asymmetric, with Ru-H = 1.70(4) and 1.89(4) Á.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. R. Churchill and J. P. Hutchinson (1978).Inorg. Chem. 17, 3528.

    Article  Google Scholar 

  2. D. J. Darensbourg and B. J. Baldwin (1981).Inorg. Chem. 20, 3846.

    Article  Google Scholar 

  3. B. F. G. Johnson, A.W. Bott, D. Hugh-Jones, and A. Rodger (1990).Polyhedron 9, 1769.

    Article  Google Scholar 

  4. M. P. Cifuentes, M. G. Humphrey, B. W. Skelton, and A. H. White (1994).J. Organomet. Chem. 466, 211.

    Article  Google Scholar 

  5. D. F. Shriver, D. Lehman, and D. Strope (1975).J. Am. Chem. Soc. 97, 1594; (b) F. H. Herbstein (1981).Acta Crystallogr., Sect B 37, 339; (c) E. Iiskola, T. A. Pakkanen, T. T. Pakkanen, and T. Venalainen (1993).Acta Chem. Scand., Ser. A. 37, 125; (d) C. K. Chen, C. H. Cheng, and T. S. Hseu (1987).Organometallics 6, 868; (e) R. B. King, G. S. Chorghade, N. K. Bhattacharyya. E. M. Holt, and G. J. Long (1991).Organomet. Chem. 411, 419; (f) W. Deck, A. K. Powell, and H. Vahrenkamp (1991).Organomet. Chem. 411, 431.

    Article  Google Scholar 

  6. M. R. Churchill, B. G. Deboer, and F. J. Rotella (1976).J. Organomet. Chem. 15, 1843; (b) B. F. G. Johnson, J. Lewis, A. G. Orpen, P. R. Raithby, and G. Süss-Fink (1979).J. Organomet. Chem. 173, 187; (c) P. M Lausarot, G. A. Vaglio, M. Valle, A. Tiripicchio, and M. Tiripicchio Camellini (1983).J. Chem. Soc., Chem. Commun. 1391; (d) M. R. Churchill, L. R. Beanan, H. J. Wasserman, C. Bueno, Z. A. Rahman, and J. B. Keister (1983).Organometallics 2, 1179; (e) P. M. Lausarot, M. Turini, G. A. Vaglio, M. Valle, A. Tiripicchio, M. Tiripicchio Camellini, and P. Garibaldi (1984).J. Organomet. Chem. 273, 239; (f) M. R. Churchill, J. C. Fettinger, and J. B. Keister (1985).Organometallics 4, 1867; (g) A. K. Chipperfield, C. E. Housecroft, and P. R. Raithby (1990).Organometallics 9, 479; (h) J. Puga, T. P. Fehlner, B. C. Gates, D. Braga, and F. Grepioni (1990).Inorg. Chem. 29, 2376; (i) S. Bhaduri, H. Khwaja, N. Sapre, K. Sharma, A. Basu, P. G. Jones, and G. Carpenter (1990).J. Chem. Soc., Dalton Trans. 1313; (j) T. Jenke, U. Bodensieck, H. Stoeckli-Evans, and G. Süss-Fink (1991).J. Organomet. Chem. 414, C28; (k) S. Jeanin, Y. Jeanin, and G. Lavigne (1978).Inorg. Chem. 17, 2103; (l) F. Iwasaki, M. J. Mays, P. R. Raithby, P. L. Taylor, and P. J. Wheatley (1981).J. Organomet. Chem. 213, 185; (m) M. R. Churchill, J. W. Ziller, and J. B. Keister (1985).J. Organomet. Chem. 297, 93; (n) F. W. B. Einstein and A. C. Willis (1986).Acta Crystallogr. Sect. C. C37, 789; (o) N. Choi, Y. Kabe, and W. Ando (1992).Organometallics 11, 607.

    Google Scholar 

  7. R. Szostak C. E. Rouse, and H. D. Kaesz (1980).J. Organomet. Chem. 191, 243; (b) A. Mayr, Y. Chih, N. M. Boag, C. E. Kampe, C. B. Knobler, and H. D. Kaesz (1984).Inorg. Chem. 23, 4640; (c) R. H. Fish, T. J. Kim, J. L. Stewart, J. H. Bushweller, R. K. Rosen, and J. W. Dupon (1986)Organometallics 5, 2193; (d) G. Süss-Fink, T. Jenke, E. Heitz, M. A. Pellinghelli, and A. Tiripicchio (1989).J. Organomet. Chem. 379, 311; (e) M. A. Pellinghelli, A. Tiripicchio, J. A. Cabeza, and L. A. Oro (1990). (J. Chem. Soc., Dalton Trans. 1509; (f) M. I. Bruce, M. G. Humphrey, M. R. Snow, E. R. T. Tiekink, and R. C. Wallis (1986).Organomet. Chem. 314, 311.

    Article  Google Scholar 

  8. A. J. Deeming (1986).Adv. Organomet. Chem. 26, 1.

    Google Scholar 

  9. E. J. Ditzel, B. E. Hanson, B. F. G. Johnson, and J. Lewis (1987).J. Chem. Soc. Dalton Trans. 1285; (b) E. J. Ditzel, B. F. G. Johnson, and J. Lewis, (1987).J. Chem. Soc., Dalton Trans. 1293; (c) S. B. Colblan, P. T. Irele, B. F. G. Johnson, F. J. Lahoz, J. Lewis, and P. R. Raithby (1989).J. Chem. Soc., Dalton Trans. 2023.

  10. D. M. Dalton, D. J. Barnett, T. P. Duggan, J. B. Keister, P. T. Malik, S. P. Modi, M. R. Shaffer, and S. S. Smesko, (1985).Organometallic 4, 1854; (b) M. R. Churchill, J. C. Fettinger and J. B. Keister (1985).Organometallics 4, 1867; (c) M. R. Shaffer and J. B. Keister (1986).Organometallics 5, 561; (d) D. S. Parfitt, J. D. Jordan, and J. B. Keister (1992).Organometallics 11, 4009.

    Article  Google Scholar 

  11. A. G. Orpen (1980).J. Chem. Soc., Dalton Trans. 2509.

  12. A. Eisenstadt, C. M. Giandomenico, M. F. Frederick, and R. M. Laine (1985).Organometallics 4, 2023.

    Article  Google Scholar 

  13. M. R. Churchill, F. J. Hollander, and J. P. Hutchison (1977),16, 2655.

    Google Scholar 

  14. L. J. Farrugia, M. Green, D. R. Hankey, M. Murray, A. G. Orpen, and F. G. A. Stone (1985).J. Chem. Soc., Dalton Trans. 117.

  15. R. D. Adams and J. P. Selegue (1980).J. Organomet. Chem. 195, 223.

    Article  Google Scholar 

  16. L. R. Nevinger and J. B. Keister (1990).Organometallics 9, 2312; (b) C. E. Housecroft and T. P. Fehlner (1986).Organometallics 5, 1279; (c) M. M. Lynam. D. M. Chipman, R. D. Barreto, and T. P. Fehlner (1987).Organometallics 6, 2405.

    Article  Google Scholar 

  17. C. A. Tolman (1977).Chem. Rev. 77, 314.

    Article  Google Scholar 

  18. A. Mayr, Y.-C. Lin, N. M. Boag, C. E. Kampe, C. M. Knobler, and H. D. Kaesz (1984).Inorg. Chem.,23, 4640; (b) J. Evans, P. M. Stroud, and M. Webster (1990).Acta Crystallogr., Cryst., Str. Commun. C46, 2334; (c) P. Braunstein, S. C. Cea, M. I. Bruce, B. W. Skelton, and A. H. White (1992).J. Organomet. Chem. 423, C38.

    Article  Google Scholar 

  19. M. Day, D. Espitia, K. I. Hardcastle, S. E. Kabir, E. Rosenberg, R. Gobetto, L. Milone, and D. Osella (1991).Organometallics 10, 3550; (b) R. D. Adams, N. M. Golembeski, and J. P. Selegue (1981).Inorg. Chem. 20, 1242; (c) R. D. Adams, D. A. Katahira, and L.-W. Yang (1981).J. Organomet. Chem. 219, 85; (d) R. D. Adams, D. A. Katahira, and L.-W. Yang (1981).J. Organomet. Chem. 219, 241; (e) R. D. Adams, Z. Dawoodi, D. F. Foust, and B. E. Segmüller (1983).Organometallics 2, 315; (f) A. J. Deeming, P. J. Manning, I. P. Rothwell, M. B. Hursthouse, and N. P. C. Walker (1984).J. Chem. Soc., Dalton Trans. 2039; (g) N. V. Podberezskaya. V. A. Maksakov, L. K. Kedrova, E. D. Korniets, and S. P. Gubin (1984).Koord. Khim. 10, 919; (h) E. J. Ditzel, M. P. Gomez-Sal, B. F. G. Johnson, J. Lewis, and P. R. Raithby (1987).J. Chem. Soc., Dalton Trans. 1623; (i) A. A. Koridze, O. A. Kizas, P. V. Petrovskii, N. E. Kolobova, Yu. T. Struvchkov, and A. I. Yanovsky (1988).J. Organomet. Chem. 388, 81; (j) R. D. Adams and M. P. Pompeo (1992).Organometallics 11, 2281; (k) A. V. Virovets, V. A. Ershova, N. N. Podeberezskaya, and V. A. Maksakov (1991).Metalloorg. Khim. 4, 932; (l) R. D. Adams and N. M. Golembeski (1979).J. Am. Soc. 101, 2579.

    Article  Google Scholar 

  20. G. N. Glavee, L. M. Daniels and R. J. Angelici (1989).Organometallics 8, 1856.

    Article  Google Scholar 

  21. M. Webster, A. C. Street, J. Evans, and V. D. Alexiev (1990).Acta Crystallogr., Cryst., Str. Commun. C46, 1843.

    Google Scholar 

  22. K. Knoll, G. Hüttner, L. Zsolnai, O. Orama, and W. Wasiucionek (1986).J. Organomet. Chem. 310, 225.

    Article  Google Scholar 

  23. L. E. Crascall and J. L. Spencer (1990).Inorg. Synth.,28, 126.

    Google Scholar 

  24. N. Walker and D. Stuart (1983).Acta Crystallogr., Sect C Found, Crystallogr. A39, 153.

    Google Scholar 

  25. International Tables for Crystallography, Vol. 4 (Kynoch Press, Birmingham, 1974).

  26. P. R. Mallinson and K. W. Muir (1985).J. Appl. Crystallogr. 18, 51.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellis, D., Farrugia, L.J. X-ray crystal structures of Ru3(μ-H)(μ-C,N-C5H4N)(CO)10-n (PiPr3) n ,n=0,1: A A case of the hydride following the Phosphine?. J Clust Sci 7, 71–83 (1996). https://doi.org/10.1007/BF01166177

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01166177

Keywords

Navigation