Skip to main content
Log in

Non-linear properties of polymer cellular materials with a negative Poisson's ratio

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Negative Poisson's ratio polymeric cellular solids (re-entrant foams) were studied to ascertain the optimal processing procedures which give rise to the smallest value of Poisson's ratio. The non-linear stress-strain relationship was determined for both conventional and re-entrant foams; it depended upon the permanent volumetric compression achieved during the processing procedure. Poisson's ratio of re-entrant foam measured as a function of strain was found to have a relative minimum at small strains. The toughness of re-entrant foam increased with permanent volumetric compression, and hence with density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. J. Gibson andM. F. Ashby, “Cellular Solids” (Pergamon, Oxford, 1988) pp. 120–168.

    Google Scholar 

  2. S. P. Timoshenko, “History of Strength of Materials” (Dover, New York, 1983) pp. 216–217, 248–249.

    Google Scholar 

  3. A. E. H. Love, “A Treatise on the Mathematical Theory of Elasticity” (Dover, New York, 1944) p. 13.

    Google Scholar 

  4. O. G. Ingles, I. K. Lee andR. C. Neil,Rock Mechan. 5 (1973) 203.

    Google Scholar 

  5. R. S. Lakes,Science 235 (1987) 1038.

    Google Scholar 

  6. K. E. Evans,J. Phys. D: Appl. Phys. 22 (1989) 1870.

    Google Scholar 

  7. B. D. Caddock andK. E. Evans,ibid. 22 (1989) 1877.

    Google Scholar 

  8. K. E. Evans andB. Caddock,ibid. 22 (1989) 1883.

    Google Scholar 

  9. S. P. Timoshenko andJ. N. Goodier, “Theory of Elasticity” (McGraw-Hill, New York, 1982) p. 398.

    Google Scholar 

  10. R. E. Peterson, “Stress Concentration Factors” (Wiley, New York, 1974) p. 137.

    Google Scholar 

  11. E. A. Friis, R. S. Lakes andJ. B. Park,J. Mater. Sci. 23 (1988) 4406.

    Google Scholar 

  12. “Annual Book of ASTM Standards”, E 8M-85 (1986).

  13. Idem., E 9-81 (1986).

  14. M. F. Beatty andD. O. Stalnaker,J. Appl. Mech. 53 (1986) 807.

    Google Scholar 

  15. S. K. Maiti, L. J. Gibson andM. F. Ashby,Acta Metall. 32 (1984) 1963.

    Google Scholar 

  16. K. C. Rusch,J. Appl. Polym. Sci. 13 (1969) 2297.

    Google Scholar 

  17. E. Q. Clutton andG. N. Rice, in Proceedings of 20th International Conference on Cell. Polym., London, 20–22 March 1991 (Rubra Technology).

  18. F. A. Shutov,Adv. Polym. Sci. 51 (1983) 155.

    Google Scholar 

  19. E. A. Blair, “Resinography of Cellular Plastics”, ASTM Special Publication No. 414 (1967) p. 84.

    Google Scholar 

  20. J. W. Hartings andJ. H. Hagan,J. Cell. Plast. 14 (1978) 81.

    Google Scholar 

  21. J. B. Choi andR. S. Lakes,J. Cell. Polym. in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, J.B., Lakes, R.S. Non-linear properties of polymer cellular materials with a negative Poisson's ratio. J Mater Sci 27, 4678–4684 (1992). https://doi.org/10.1007/BF01166005

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01166005

Keywords

Navigation