manuscripta mathematica

, Volume 58, Issue 3, pp 363–376 | Cite as

Applications of perturbation theory to iterated fibrations

  • Larry Lambe
  • Jim Stasheff


For a class of spaces including simply connected spaces and classifying spaces of nilpotent groups, relatively small differential graded algebras are constructed over commutative rings with 1 which are chain homotopy equivalent to the singular cochain algebra. An application to finitely generated torsion-free nilpotent groups over the integers is given.


Perturbation Theory Number Theory Algebraic Geometry Topological Group Commutative Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    BARCUS, W.D.: On the complexes of Hirsch and Eilenberg-Moore, Proc. Camb. Phil. Soc.64, 953–960(1968)Google Scholar
  2. [2]
    BARCUS, W.D.: Principal bundles and Hirsch's spectral sequence, Quart. J. Math., Oxford17, 321–334(1966)Google Scholar
  3. [3]
    BARRETT, M.G.: V.K.A.M. Gugenheim and J.C. Moore: On simisimplicial fibre-bundles, Amer. J. Math.81, 639–657(1959)Google Scholar
  4. [4]
    BROWN, E.H. Jr.: Twisted tensor products, Ann. Math.1, 223–246(1959)Google Scholar
  5. [5]
    BROWN, R.: The twisted Eilenberg-Zilber theorem, Celebrazioni Archimedee del secolo XX, Simposio di topologia 34–37(1967)Google Scholar
  6. [6]
    CARTAN, H.: Séminaire Cartan (École Norm. Sup., Paris) 1954–5, Algebrès d'Eilenberg-MacLane et Homotopie, exposés 2–11Google Scholar
  7. [7]
    CHEN, K-T.: On the composition functions of nilpotent Lie groups, Proc. Amer. Math. Soc.8, 1158–1159(1957)Google Scholar
  8. [8]
    COCKCROFT, W.H.: The cohomology groups of a fibre space with fibre a space of type K(π,n), Proc. Amer. Math. Soc.7, 1120–1126(1956)Google Scholar
  9. [9]
    COCKCROFT, W.H.: The cohomology groups of a fibre space with fibre a space of type, K(π,n), II, Trans. Amer. Math. Soc.91, 505–524(1959)Google Scholar
  10. [10]
    COCKCROFT, W.H.: On a theorem of Borel, Trans. Amer. Math. Soc.98, 255–262(1961)Google Scholar
  11. [11]
    EILENBERG, S. and MACLANE, S.: On the groups H(π,n) I, Ann. Math.58, 55–106(1953)Google Scholar
  12. [12]
    EILENBERG, S. and MACLANE, S.: On the groups H(π,n) II, Ann. Math.60, 49–139(1954)Google Scholar
  13. [13]
    GUGENHEIM, V.K.A.M. and STASHEFF, J.: On perturbations andA structures, Bull. Soc. Math. de Belg. (to appear)Google Scholar
  14. [14]
    GUGENHEIM, V.K.A.M.: On a theorem of E.H. Brown, IL. J. Math.4, 292–311(1960)Google Scholar
  15. [15]
    GUGENHEIM, V.K.A.M.: On a the chain complex of a fibration, IL. J. Math.3, 398–414(1972)Google Scholar
  16. [16]
    GUGENHEIM, V.K.A.M.: On a perturbation theory for the homology of the loop-space, J. Pure & Appl. Alg.25, 197–205(1982)Google Scholar
  17. [17]
    GUGENHEIM, V.K.A.M. and MAY, J.P.: On the theory and application of differential torsion products, Mems. Am. Math. Soc. 142(1974)Google Scholar
  18. [18]
    GUGENHEIM, V.K.A.M. and MUNKHOLM, H.J.: On the extended functoriality of Tor and Cotor, J. Pure & Appl. Alg.4, 9–29(1974)Google Scholar
  19. [19]
    HILTON, P.: Homotopy theory and duality, Notes on Mathematics and its applications, Gordon and Breach, N.Y.Google Scholar
  20. [20]
    HALL, P.: Nilpotent groups, Canad. Math. Cong., Edmonton, 1957Google Scholar
  21. [21]
    HALPERIN, S. and STASHEFF, J.D.: Differential algebra in its own rite, Proc. Adv. Study Inst. Top., Aarhus, 1970Google Scholar
  22. [22]
    HIRSCH, GUY: Sur les groups d'homologies des espaces fibres, Bull. Soc. Math. de Belg.6, (1953)79–96Google Scholar
  23. [23]
    HUSEMOLLER, D., MOORE, J. and Stasheff, J.D.: Differential homological algebra and homogeneous spaces, J. Pure & Appl. Alg.5, 113–185 (1974)Google Scholar
  24. [24]
    HÜBSCHMANN, J.: The homotopy type ofFψq, the complex and symplectic cases, Cont. Math.55, 487–518(1986)Google Scholar
  25. [25]
    LAMBE, L.: Cohomology of principal G-bundles over a torus whenH *(BG;R) is polynomial, Bull. Soc. Math. de Belg. (to appear)Google Scholar
  26. [26]
    LAMBE, L. and PRIDDY, S.: Cohomology of nilmanifolds and torsionfree nilpotent groups, Trans. Amer. Math. Soc.273, 39–55(1982)Google Scholar
  27. [27]
    MACLANE, S.: Homology, Die Grundlehren der Math. Wissenschaften, Band 114, Springer-Verlag, N.Y.Google Scholar
  28. [28]
    MAY, PETER J.: Simplicial objects in Algebraic topology, Mathematical studies #11, Van Nostrand, 1967Google Scholar
  29. [29]
    MOORE, J.C. Séminaire Cartan (École Norm. Sup., Paris) 1954–5, Comparaison de la Bar-construction à la construction W et aux complexesK(π,n), exposés 13Google Scholar
  30. [30]
    QUILLEN, D.: Rational homotopy theory, Ann. Math.90, 205–195(1969).Google Scholar
  31. [31]
    SZCZARBA, R.H.: The homology of twisted cartesian products, Trans. Am. Math. Soc.100, 197–216(1961)Google Scholar
  32. [32]
    SHIH, W.: Homology des espaces fibre, Inst. des Hautes Études Sci.13, 93–176(1962)Google Scholar
  33. [33]
    STASHEFF, J.: Homotopy associativity of H-spaces II, Trans. Amer. Math. Soc.108, 293–312(1963)Google Scholar
  34. [34]
    SULLIVAN, D.: Infinitesimal computations in topology, Publ. Inst. Hautes Études Sci.47, 269–331(1977)Google Scholar
  35. [35]
    WALL, C.T.C.: Resolutions for extensions of groups, Proc. Camb. Phil. Soc.57, 251–255(1961)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Larry Lambe
    • 1
    • 2
  • Jim Stasheff
    • 1
    • 2
  1. 1.Department of MathematicsNotre Dame UniversityNotre Dame
  2. 2.Department of MathematicsUniversity of North CarolinaChapel Hill

Personalised recommendations