Skip to main content
Log in

Sandstone-hosted lead-zinc mineral deposits and their relation to the tectonic mobilization of the baltic shield during the Caledonian orogeny—a reinterpretation

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

Sandstone-hosted lead-zinc impregnation deposits in Scandinavia occur in Vendian to Cambrian and, locally, Ordovician sandstones that rest unconformably on the deeply eroded Baltic Shield. The sandstones are overthrust by the Caledonian nappes or form part of the lowermost Caledonian thrust units. Sandstone-hosted lead-zinc deposits, that occur along the present erosional front of the Caledonides, contain galena and sphalerite cementing fractures and pore space. The deposits formed by fluid-mixing processes in the sandstones. Early ore genetic models considered the ore-hosting sandstones, because of the positive correlation between ore grade and palaeo-permeability, as main aquifer for the metalliferous fluids that were interpreted to be either ground-waters or hot basinal brines driven out from geosynclinal sediments during the Caledonian orogeny.

It is suggested here that the distribution of sandstone-hosted lead-zinc deposits is controlled by Caledonian reactivated basement structures, as the ores overlay faults and lithologic discontinuities in the basement. The geographic distribution of the Scandinavian sandstone-hosted lead-zinc deposits coincides with areas that show both extensive thrust sheets of the Lower Allochthon unit at the front and basement culminations in the interior of the Caledonian orogen. These areas are characterized by deeper thrusting levels and probably more intense reactivation of basement faults, which made the basement more susceptible to large-scale fluid migration. Metalliferous fluids emerging from Caledonian reactivated basement faults mixed with fluids in the sedimentary cover, which resulted in metal precipitation. The lead-zinc deposits in sandstones that formed by these processes occur selectively in the lowermost permeable cover.

Zusammenfassung

Entlang der erosiven Front der kaledonischen Decken treten Bleiglanz- und Zinkblendeimprägnierungen in wendischen bis kambrischen, sowie teilweise ordovizischen, Sandsteinen auf, welche auf dem tief erodierten proterozoischen Baltischen Schild abgelagert und von den kaledonischen Decken überschoben worden sind. Die Bleiglanz- und Zinkblendeimprägnierungen waren infolge der Mischung von zwei hydrothermalen Lösungen in den Sandsteinen gebildet worden. ältere erzgenetische Modelle betrachteten die vererzten Sandsteine infolge der positiven Korrelation zwischen den Erzgehalten und der Faläopermeabilität als hautpsächlichen Zufuhrsweg für die vererzenden Fluide. Die Erzlösungen wurden entweder als Grundwässer und frühdiagenetische Lösungen oder als während der kaledonischen Deckenüberschiebung aus geosynklinalen Sedimenten ausgepreßte Lösungen interpretiert.

Es wird hier vorgeschlagen; daß die Bildung der Vererzungen, welche Verwerfungen und Gesteinskontakte im Grundgebirge überlagern, von Strukturen im kaledonisch reaktivierten Grundgebirge kontrolliert wurde. Die geographische Verbreitung der Blei Zinkvererzungen in den Sandsteinen fällt sowohl mit mächtigen Überschiebungsdecken des Unteren Allochthons an der Gebirgsfront als auch mit Grundgebirgsaufwölbungen im Gebirgsinnern zusammen, welche beide einen tieferen Abscherungshorizont und eine möglicherweise damit zusammenhängende kräftigere Verschuppung des Grundgebirges bedingen. Eine lokal intensivere tektonische Beanspruchung des Grundgebirges resultierte in einer erhöhten großräumigen Durchlässigkeit für hydrothermale Lösungen. Aus dem Grundgebirge austretende Fluide mischten sich mit in der Überlage vorhandenen Fluiden und fällten dadurch ihren Metallgehalt aus. Das selektive Auftreten von Blei-Zinkvererzungen in den Sandsteinen ist durch deren Lage als unterste auf dem Grundgebirge abgesetzte fluidführende lithologische Einheit bedingt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bax G (1986) Basement involved Caledonian nappe tectonics in the Swedish part of the Rombak-Sjangeli Window. Geol Fören Stockholm Förh 108: 268–270

    Google Scholar 

  • —— (1989) Caledonian structural evolution and tectonostratigraphy in the Rombak-Sjangeli Window and its covering sequences, northern Scandinavian Caledonides. Norges geol Unders Bull 415: 87–104

    Google Scholar 

  • Kathol B, Romer RL (1991) Geology and tectonic stratigraphy at the Caledonian thrust front in the Torneträsk area, Sweden. In:Andresen A, Steltenpohl MG (eds) A Geotraverse excursion through the Scandinavian Caledonides: Torneträsk-Ofoten-Tromsø, August 4–11, 1991. IGCP Project 233: Terranes in the Circum-Atlantic Paleozoic Orogens, pp 1–18

  • Bethke CM, Marshak S (1990) Brine migrations across North America-The plate tectonics of groundwater. Ann Rev Earth Planet Sci 18: 287–315

    Google Scholar 

  • Bjørlykke A, Sangster DF (1981) An overview of sandstone lead deposits and their relation to red-bed copper and carbonate-hosted lead-zinc deposits. Econ Geo175th Anniv Vol: 179–213

  • ——,Thorpe RI (1982) The source of lead in the Osen sandstone lead deposit on the Baltic Shield, Norway. Econ Geol 77: 430–440

    Google Scholar 

  • ——,Sangster DF, Fehn U (1991) Relationship between high heat-producing (HHP) granites and stratabound lead-zinc deposits. In:Pagel M, Leroy JL (eds) Source, transport and deposition of metals. Proceedings of the 25 years Society of Geology Applied to Mineral Deposits Anniversary Meeting, pp 257–260. Nancy August 30 to September 3, 1991, A.A. Balkema, Rotterdam

    Google Scholar 

  • Cathles LM, Smith AT (1983) Thermal constraints on the formation of Mississippi Valley-Type lead-zinc deposits and their implications for episodic basin dewatering and deposit genesis. Econ Geol 78: 983–1002

    Google Scholar 

  • Christofferson HC, Wallin B, Selman S, Rickard DT (1979) Mineralization controls in the sandstone lead-zinc deposits at Vassbo, Sweden. Econ Geol 74: 1239–1249

    Google Scholar 

  • Deming D, Nunn JA, Evand DG (1990) Thermal effects of compaction-driven groundwater flow from overthrust belts. J Geophys Res 95: 6669–6683

    Google Scholar 

  • Duane MJ, deWit MJ (1988) Pb-Zn ore deposits of the northern Caledonides: Products of continental-scale fluid mixing and tectonic expulsion during continental collision. Geology 16: 999–1002

    Google Scholar 

  • Gee DG, Zachrisson E (1979) The Caledonides in Sweden. Sver Geol Unders C769: 48 pp

  • Gorbatschev R, Lindh A, Solyom Z, Laitakari I, Aro K, Lobach-Zhuchenko SB, Markov MS, Ivliev AI, Bryhni I (1987) Mafic dyke swarms of the Baltic Shield. In:Halls HC, Fahrig WF (eds) Mafic Dyke Swarms. Geol Assoc Can Spec Pap 34: 361–372

  • Grip E (1954) Blymalmen vid Laisvall, dess geologi och en jämförelse med några utländska förekomster (in Swedish). Geol Fören Stockholm Förh 76: 357–380

    Google Scholar 

  • —— (1960) The lead deposits of the eastern border of the Caledonides in Sweden. In:Haapala P, Ödman O (eds) Genetic problems of ores. Int Geol Congr, Copenhagen, Proc Sect 16: 149–159

    Google Scholar 

  • —— (1978) Mineral Deposits of Europe: Sweden. In:Bowie SHU, Kvalheim A, Haslam HW (eds) Mineral Deposits of Europe: Northwestern Europe, pp 93–198. Inst Min Met & Min Soc London

    Google Scholar 

  • Hurich CA, Palm H, Dyrelius D, Kristoffersen Y (1989) Deformation of the Baltic continental crust during Caledonide intracontinental subduction: Views from seismic reflection data. Geology 17: 423–425

    Google Scholar 

  • Johansson Ä (1983) Lead isotope composition of Caledonian sulfide-bearing veins in Sweden. Econ Geol 78: 1674–1688

    Google Scholar 

  • ——Rickard DT (1984) Isotopic composition of Phanerozoic ore leads from the Swedish segment of the Fennoscandian Shield. Mineral Deposita 19: 249–255

    Google Scholar 

  • —— —— (1989) Pb-Zn ore deposits of the northern Caledonides; products of continental-scale fluid mixing and tectonic expulsion during collision; discussion. Geology 17: 1059

    Google Scholar 

  • Kautsky F, Tegengren FR (1952) deDie Geologic der Umgebung des Tuoddarjaure am Südrande des Sjangelifensters. Geol Fören Stockholm Förh 74: 455–474

    Google Scholar 

  • Lilljequist R (1973) Caledonian geology of the Laisvall area, southern Norrbotten, Swedish Lapland. Sver geol Unders C691: 43 pp

  • Lindblom S (1982) Fluid inclusion studies of the Laisvall sandstone lead-zinc deposit, Sweden. Medd Stockholms Univ Geol Inst 252: 171 pp

  • Lindqvist J-E (1987) Metamorphism in basement rocks and the implications for the tectonic evolution, Nasafjäll Window, Scandinavian Caledonides. Geol Rundsch 76: 837–850

    Google Scholar 

  • Lindström M, Bax G, Dinger M, Dworatzek M, Erdtmann W, Fricke A, Kathol B, Klinge H, Pape Pv, Stumpf U (1985) Geology of a part of the Torneträsk section of the Caledonian front, northern Sweden. In:Gee DG, Sturt BA (eds) The Caledonide orogen—Scandinavia and related areas. John Wiley and Sons, Chichester, pp 507–513

    Google Scholar 

  • Ramberg H (1980) Diapirism and gravity collapse in the Scandinavian Caledonides. J Geol Soc London 137: 261–270

    Google Scholar 

  • Rice AHN (1990) The evolution of the Western Gneiss Region as a crustal scale pop-up: A working hypothesis. Geolognytt 90: 93–94

    Google Scholar 

  • Rickard LET, Willdén MY, Marinder N-E, Donnelly TH (1979) Studies on the genesis of the Laisvall sandstone lead-zinc deposits, Sweden. Econ Geol 74: 1255–1285

    Google Scholar 

  • ——Coleman M, Swainbank I (1981) Lead and sulfur isotopic compositions of galena from the Laisvall sandstone lead-zinc deposit, Sweden. Econ Geol 76: 2042–2046

    Google Scholar 

  • Roberts D, Gee DG (1985) An introduction to the structure of the Scandinavian Caledonides. In:Gee DG, Sturt BA (eds) The Caledonide orogen-Scandinavia and related areas. John Wiley and Sons, Chichester, pp 55–68

    Google Scholar 

  • Romer RL (1990) Lead mobilization during foreland metamorphism in orogenic belts: Examples from northern Sweden. Geol Rundsch 79: 693–707

    Google Scholar 

  • —— (1991) Contrasting lead isotopic signature and style of formation of Phanerozoic metamorphogenic metal deposits on the Proterozoic Baltic Shield of Northern Europe. InPagel M, Leroy JL (eds) Source, transport and deposition of metals. Proceedings of the 25 years Society of Geology Applied to Mineral Deposits Anniversary Meeting, 337–339. Nancy August 30 to September 3, 1991, A.A. Balkema, Rotterdam

    Google Scholar 

  • — (in press) Metallogeny and lead isotopic composition of base-metal sulfide deposits in the Rappen area, northern Sweden. Mineral Deposita

  • ——Bax G (1990) The rhombohedral framework of the Scandinavian Caledonides. Geol Soc Am Annual Meeting, Dallas, Abstract vol 22: A367

    Google Scholar 

  • —— —— (1992) The rhombohedral framework of the Scandinavian Caledonides and their foreland. Geol Rundsch 81: 391–401

    Google Scholar 

  • Stodt F (1987) Sedimentologie, Spurenfossilien and Weichkörper-Metazoen der Dividal-Gruppe (Wendium/Unterkambrium) im Torneträskgebiet/Nordschweden. Unpubl PhD thesis, Marburg, Germany, 119 pp

  • Sundblad K (1989) Precambrian metal source in sulphide deposits in the northernmost part of the Scandes. Geol Fören Stockholm Förh 111: 415–418

    Google Scholar 

  • Tegengren FR (1962) Vassbo blymalmfyndighet i Idre och dess geologiska inramning (The Vassbo lead ore deposit at Idre, Western Sweden, and its geological setting; in Swedish with English summary). Sver Geol Unders C586: 61 pp

  • Vogt T (1922) Bidrag til fjeldkjedens stratigrafi og tektonik (Contribution to the stratigraphy and tectonics of the [Caledonian] mountain range). Geol Fören Stockholm Förh 44: 714–739

    Google Scholar 

  • Willden MY (1980) Paleoenvironment of the autochthoneous sedimentary rock sequence at Laisvall, Swedish Caledonides. Stockholm Contrib Geol 33: 100 pp

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 3 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romer, R.L. Sandstone-hosted lead-zinc mineral deposits and their relation to the tectonic mobilization of the baltic shield during the Caledonian orogeny—a reinterpretation. Mineralogy and Petrology 47, 67–85 (1992). https://doi.org/10.1007/BF01165298

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01165298

Keywords

Navigation