Skip to main content
Log in

Parallel implementation of semiempirical quantum methods for the Intel platforms

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The restructuring of quantum mechanical applications for use on message-passing, distributed memory multicomputers is found to be a challenge. A key computation in these large scale quantum chemistry packages is the determination of eigenvalues and eigenvectors of real sym metric matrices. These computations arise during geometry optimization and vibrational analysis, and typically consume at least half of the total computation time. This work illustrates the parallelization of both tasks within the semiempirical quantum chemistry code, MOPAC, on Intel parallel platforms. The application of this parallel code is demonstrated on novel organic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.J. Hehre, L. Radom, P. v. R. Schleyer and J.A. Pople,Ab Initio Molecular Orbital Theory (Wiley, New York, 1986).

    Google Scholar 

  2. H.F. Schaefer, Science 231 (1986) 1100.

    Google Scholar 

  3. J.J.P. Stewart, P. Csaszar and P. Pulay, J. Comp. Chem. 3 (1982) 227.

    Google Scholar 

  4. P. Pulay, in:Modern Theoretical Chemistry, ed. H.F. Schaefer (Plenum Press, New York, 1977) p.153.

    Google Scholar 

  5. J.A. Pople, R.A. Krishnan and H.B. Schlegel, In. J. Quantum Chem. Symp. 13 (1979) 225.

    Google Scholar 

  6. H.P. Luthi, J.E. Mertz, M.W. Feyereisen and J.E. Almlof, J. Comp. Chem. 13 (1992) 160.

    Google Scholar 

  7. R.A. Whiteside, J.S. Binkley, M.E. Colvin and H.F. Schaefer III. J. Chem. Phys. 86 (1987) 2185.

    Google Scholar 

  8. J.E. Hertz and J.W. Andzelm, CRAY Channels 10 (1991).

  9. H.P. Luthi and J.E. Mertz, Supercomputing Review (1992).

  10. M.F. Guest, R.J. Harrison, J.H. van Lenthe, L.C.H. van Corier, Theor. Chim. Acta. 71 (1987) 117.

    Google Scholar 

  11. M. Dupuis and J.D. Watts, Theoret. Chim. Acta 7 (1987) 91.

    Google Scholar 

  12. R. Carbó, L. Molino and B. Calabuig, J. Comp. Chem. 13 (1992)155.

    Google Scholar 

  13. M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus and S.T. Elbert, J. Comp. Chem. 14 (1993) 1347.

    Google Scholar 

  14. J.J.P. Stewart, Quantum Chem. Exchange Bull. 5 (1985) 126.

    Google Scholar 

  15. M.J.S. Dewar, E.G. Zoebisch, E.F. Healy and J.J.P. Steward, J. Am. Chem. Soc. 107 (1985) 3902.

    Google Scholar 

  16. J.J.P. Stewart, (1988).

  17. A. Szabo and N. Ostlund,Modern Quantum Chemistry (MacMillan, New York, 1982).

    Google Scholar 

  18. M.J. Frisch, M. Head-Gordon, G.W. Trucks, J.B. Foresman, B. Schlegel, K. Raghavachari, M. Robb, J.S. Binkley, C. Gonzalez, D.J. Defrees, D.J. Fox, R.A. Whiteside, R. Seeger, C.F. Melius, J. Baker, R.L. Martin, L.R. Kahn, J.J.P. Steward, S. Topial and J.A. Pople, Gaussian Inc., Chicago (1992).

  19. M.W. Schmidt, K.K. Baldridge, J.A. Boatz, J.H. Jensen, S. Koseki, M.S. Gordon, K.A. Nguyen, T.L. Windus and S.T. Albert, Quantum Chem. Program Exchange Bull. 10 (1990).

  20. R.D. Amos and J.E. Rice, The Cambridge Analytical Derivatives Package, Cambridge (1987).

  21. T.Z. Kalamboukis, Parallel Comput. 18 (1992) 207.

    Google Scholar 

  22. J. Dongarra and D. Sorensin, SIAM J. Sci. Stat. Comput. 8 (1987) s139.

    Google Scholar 

  23. C.F. Ipsen and E.R. Jessup, SIAM J. Sci. Stat. Comput. 12 (1991) 469.

    Google Scholar 

  24. A. Szabo and N. S. Ostlund,Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (MacMillan, New York, London, 1982).

    Google Scholar 

  25. M.T.S. Dewar and W. Thiel, J. Am. Chem. Soc. 99 (1977) 4899.

    Google Scholar 

  26. R.C. Bingham, M.J.S. Dewar and D.H. Lo, J. Am. Chem. soc. 97 (1975) 1285.

    Google Scholar 

  27. J.J.P. Stewart, J. Comp. Chem. 10 (1989) 209.

    Google Scholar 

  28. J.J.P. Stewart, J. Comp. Aided Mol. Design 4 (1990) 45.

    Google Scholar 

  29. J. Jensen, K.K. Baldridge and M.S. Gordon, J. Phys. Chem. 96 (1992) 8340.

    Google Scholar 

  30. C.G. Broyden, J. Inst. Math. Appl. 6 (1970) 222.

    Google Scholar 

  31. J. Baker, J. Comp. Chem. 7 (1986) 385.

    Google Scholar 

  32. J. Baker, J. Camp. Chem. 8 (1987) 563.

    Google Scholar 

  33. QCPE: Quantum Chemistry Program Exchange, Creative Arts Building 181, Indiana University, Bloomington, IN 47505, USA.

  34. B.N. Partlett,The Symmetric Eigenvalue Problem (Prentice-Hall, Englewood Cliffs, 1980).

    Google Scholar 

  35. W.H. Press,Numerical Recipes (Cambridge University Press, New York, 1986).

    Google Scholar 

  36. J. Butcher, Math. Comput. 19 (1965) 408.

    Google Scholar 

  37. J. Demmel, Veselic University of Tennessee, CS-89-88 (1989).

  38. B. Yoshitake, Computers and Chem. 6 (1982).

  39. R. Hockney,Computer Benchmarks (Elsevier, Amsterdam, 1993).

    Google Scholar 

  40. M.F. Guest, E. Apra, D.E. Bernholdt, H.A. Fruchtl, R.J. Harrison, R.A. Kendall, R.A. Kutteh, J.B. Nicholas, J.A. Nichols, M.S. Stave and A.T. Wong, unpublished results (1994).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldridge, K.K. Parallel implementation of semiempirical quantum methods for the Intel platforms. J Math Chem 19, 87–109 (1996). https://doi.org/10.1007/BF01165133

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01165133

Keywords

Navigation