Skip to main content
Log in

Elements of irreducible tensorial matrices generated by finite groups with applications to ligand field Hamiltonians

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Using symmetry to determine Hamiltonian matrix elements for quantum systems with finite group symmetry is a special case of obtaining group-generated irreducible tensorial matrices. A group-generated irreducible tensorial matrix transforms irreducibly under the group and is a linear combination of group transformations on a reference matrix. The reference matrix elements may be appropriate integrals or parameters. The methods of normalized irreducible tensorial matrices (NITM) are employed to express elements of the generated matrix in terms of those of the reference matrix without performing the actual transformations. Only NTTM components of the reference matrix with the same transformation properties as the group-generated matrix will contribute to its elements. The elements of invariant symmetry-generated matrices are proportional to simple averages of certain elements of the reference matrix. This relation is substantially more efficient than previous techniques for evaluating matrix elements of octahedral and tetragonal d-type ligand-field Hamiltonians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.L. Ellzey, Jr., Int. J. Quant. Chem. 41 (1992) 653.

    Google Scholar 

  2. M.L. Ellzey, Jr., J. Math. Chem. 8 (1991) 333.

    Google Scholar 

  3. M.L. Ellzey, Jr., Int. J. Quant. Chem. 40 (1991) 347.

    Google Scholar 

  4. L.C. Biedenharn and J.D. Louck,Angular Momentum in Quantum Physics: Theory and Applications, Encyclopedia of Mathematics and its Applications, Vol. 8, Ser. ed. G.-C. Rota (Addison-Wesley, New York, 1981).

    Google Scholar 

  5. G. Racah, Phys. Rev. 63 (1943) 367.

    Google Scholar 

  6. M. Kibler and G. Grenet, Int. J. Quant. Chem. 28 (1985) 213.

    Google Scholar 

  7. M. Kibler, J. Math. Phys. 21 (1980) 422.

    Google Scholar 

  8. M. Kibler, Int. J. Quant. Chem. 3 (1969) 795.

    Google Scholar 

  9. M. Kibler, J. Mol. Spectrosc. 26 (1968) 111.

    Google Scholar 

  10. J.S. Griffith,The Theory of Transition Metallons (Cambridge, 1961).

  11. M.L. Ellzey, Jr., Int. J. Quant. Chem. 7 (1973) 253.

    Google Scholar 

  12. Ref. [10] p. 226.

  13. M.L. Ellzey, Jr., J. Chem. Inf. Comp. Sci. 34 (1994) 259.

    Google Scholar 

  14. D.J. Klein, J. Math. Phys. 25 (1984) 200.

    Google Scholar 

  15. M. Hamermesh,Group Theory And Its Applications To Physical Problems (Addison-Wesley, New York, 1962).

    Google Scholar 

  16. J.S. Griffith, Mol. Phys. 3 (1960) 258.

    Google Scholar 

  17. J.S. Griffith,The Irreducible Tensor Method for Molecular Symmetry Groups (Prentice-Hall, Englewood Cliffs, NJ, 1962).

    Google Scholar 

  18. D.E. Littlewood,The Theory of Group Characters (Oxford University Press: Oxford, UK, 1950).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellzey, M.L. Elements of irreducible tensorial matrices generated by finite groups with applications to ligand field Hamiltonians. J Math Chem 19, 1–13 (1996). https://doi.org/10.1007/BF01165126

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01165126

Keywords

Navigation