Skip to main content
Log in

The degree of oxidation of iron in synthetic iron-magnesian biotites

Le degré d'oxidation du fer en biotites synthétiques contenants le fer et le magnésium

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

Chemical analytical and pyrolytical methods have been used to study the Fe+2/Fe+3 ratios and dehydroxylation reactions in synthetic biotites. It has been found for the biotites with Fe/(Fe + Mg) of 20 to 70 mole % that the oxidation degree decreases from 26 to 16% with increasing iron. Based on the measured amounts of water and hydrogen released during pyrolysis it is inferred that the deprotonization is a dominant reaction at low temperatures (T ⩽ 600°C), accompanied by dehydration as the temperature increases. Depending on the composition, a complete dehydroxylation takes place at T ⩾ 900 °C, and the measured amount of water corresponds to the iron oxidation degree in the starting samples. The results of this study have important implications with respect to determination of the formation conditions of biotite-bearing rocks, and also for improvement of the techniques for determination of different valence of iron and water.

Résumé

Des méthodes chimiques et pyrolitiques ont été utilisées pour l'étude des rapports Fe+2/Fe+3 et de la réaction de la déhydroxilation en biotites synthétiques. On a trouvé pour les biotites avec Fe/(Fe + Mg) de 20-70 mole % que le degré d'oxidation décroît à partir de 26 jusqu'à 16% pendent que le contenu du fer s'accroît. Sur la base de la quantité d'eau et hydrogène liberée pendant la pyrolyse, on infère que la déprotonisation est une réaction dominante à températures basses (T = 600°C), mais quand la température s'accroît, la déprotonisation est accopagnée de la déhydratation. Dépendant de la composition il y a une déhydroxilation complète à T = 900°C, et la quantité de l'eau mesurée correspond au degré d'oxidation du fer dans les specimens initials. Les résultats de cette étude infuencent la détermination des conditions de formation des roches contenantes biotite et aussi l'amélioration des techniques de la détermination du fer de valences différentes et de l'eau.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alimarin PA, Frid BI (1961) Quantitative microchemical analysis of ores and minerals. Geokhimizdat, Moscow (in Russian)

    Google Scholar 

  • Begheijn LT (1979) Determination of iron (II) in rock, soil and clay. Anal 104: 1055–1061

    Google Scholar 

  • Chandra U, Lokanathan S (1982) A Mössbauer study of the effect of heat treatment on biotite micas. J Phys D 15: 2331–2340

    Google Scholar 

  • Chou JM (1986) Permeability of precious metals to hydrogen at 2 kb total pressure and elevated temperatures. Am J Sci 286: 638–658

    Google Scholar 

  • Eugster HP, Wones DR (1962) Stability relations of the ferrugineous biotite, annite. J Petrol 3: 82–125

    Google Scholar 

  • Ferrow E (1987a) Mössbauer and X-ray studies on the oxidation of annite and ferriannite. Phys Chem Min 14: 270–275

    Google Scholar 

  • Ferrow E (1987b) Mössbauer effect and X-ray diffraction studies of synthetic iron-bearing trioctahedral micas. Phys Chem Min 14: 276–280

    Google Scholar 

  • Fonarev VI, Graphchikov AA, Konilov AN (1986) Investigation of variable composition minerals as indicators of the mineralogenesis conditions. In: Experiment in solving urgent geological problems. Nauka, Moscow (in Russian), pp 201–220

    Google Scholar 

  • ——,Konilov AN (1986) Experimental study of Fe-Mg distribution between biotite and orthopyroxene at P = 490 MPa. Contrib Min Petrol 93: 227–235

    Google Scholar 

  • Hazen RM, Wones DR (1972) The effect of cation substitution on the trioctahedral micas. Amer Mineral 57: 103–129

    Google Scholar 

  • —— (1978) Predicted and observed compositional limits of trioctahedral micas. Amer Mineral 63: 885–892

    Google Scholar 

  • Hewitt DA, Wones DR (1984) Experimental phase relations of the micas. Rev Min 13: 201–256

    Google Scholar 

  • Hogg CS, Meads RE (1975) A Mössbauer study of thermal decomposition of biotites. Mineral Mag 40: 79–88

    Google Scholar 

  • Kalinichenko AM, Pasal'skayla LF, Matyash IV, Ivanitsky VP, Gamarnik G Ya, Siroshtan RI (1985) On the nature of hydrogen released when heating biotites and hornblendes in an inert medium. Geokhim N 2: 254–257 (i Russian)

    Google Scholar 

  • Koshemchuk SK, Tikhomirova VI (1984) The use of a CHN-analyzer to determine the content of absorption crystallization water and CO2 in microsamples of minerals and rocks. Geokhim N 7: 1083–1087 (in Russian)

    Google Scholar 

  • Koshemchuk SK, Tikhomirova VI (1987) Determination of the microcontent of hydrogen and water in microsamples of glasses modelling reduced magmatic melts with the aid of a CHN-analyzer. Geokhim N 11: 1641–1645 (in Russian)

    Google Scholar 

  • Matson DW, Muenow DW, Garcia MO (1986) Volatile contents of phlogopite micas from South African kimberlite. Contrib Mineral Petrol 93: 399–408

    Google Scholar 

  • Partin E (1984) Ferric/ferrous determinations in synthetic biotite. M. S. thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia

    Google Scholar 

  • ——,Hewitt DA, Wones DR (1983) Quantification of ferric iron in biotite. Geol Soc Am Abstr with Programs 15: 659

    Google Scholar 

  • Rimsaite J (1970) Structural formulae of oxidized and hydroxyl-deficient micas and decomposition'of the hydroxyl group. Contrib Mineral Petrol 25: 225–240

    Google Scholar 

  • Sanz J, Gonsàlez-Carreno T, Gancedo R (1983) On dehydroxylation mechanisms of a biotite in vacuo and in oxygen. Phys Chem Min 9: 14–18

    Google Scholar 

  • Takeda H, Ross M (1975) Mica polytypism dissimilarities in the crystal structures of coexisting 1M and 2M1 biotite. Amer Mineral 60: 1030–1040

    Google Scholar 

  • Wones DR (1963) Physical properties of synthetic biotites on the join phlogopite-annite. Amer Mineral 48: 1300–1322

    Google Scholar 

  • ——,Eugster HP (1965) Stability of biotite: experiment, theory and application. Amer Mineral 50: 1228–1272

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tikhomirova, V.I., Konilov, A.N. & Koshemchuk, S.K. The degree of oxidation of iron in synthetic iron-magnesian biotites. Mineralogy and Petrology 41, 41–52 (1989). https://doi.org/10.1007/BF01164809

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01164809

Keywords

Navigation